Properties of kinetic Reversed Shear Alfvén Eigenmodes

N.N. Gorelenkov

Princeton Plasma Physics Laboratory, Princeton

Acknowledgments to G.J. Kramer, R. Nazikian, L.E. Zakharov, and E.D.Fredrickson

21st US TTF Workshop, March 11, Boulder, 2008

Motivation

NSTX

B(T)	0.45
$R_0/a(m)$	0.85/0.66
β_{pl}/β_{fast} (%)	$\sim 30/15$
fastions	2MW NBI

• Down sweeping RSAEs are rarely observed:

- is it due to strong damping or
- due to nonexistence?
- DIII-D and NSTX demonstrate strong losses when RSAEs are present.
- Both bottom and down sweep RSAEs offer a unique opportunity for plasma diagnostics, MHD spectroscopy.

Motivation

NSTX

B(T)	0.45
$R_0/a(m)$	0.85/0.66
β_{pl}/β_{fast} (%)	$\sim 30/15$
fastions	2MW NBI

• Down sweeping RSAEs are rarely observed:

- is it due to strong damping or
- due to nonexistence?
- DIII-D and NSTX demonstrate strong losses when RSAEs are present.
- Both bottom and down sweep RSAEs offer a unique opportunity for plasma diagnostics, MHD spectroscopy.

What are the properties of these modes?

Relation of RSAEs and Alfvén continuum during *q*-profile relaxation

• *n* = 10, large aspect ratio cylindrical plasma

$$q = \frac{q}{q_{min} / \left[1 - \left(r - r_0\right)^2 / a^2 w^2\right]}$$

•
$$R/a = 10/1$$
, $w = 2$,
 $\beta(\%) = 0.1(1 - r^2/a^2)$.

• We will study *down sweeping* and *bottom of the sweep* modes.

Why low-f instabilities are important?

- RSAEs and new class of instabilities, Beta-induced Alfvén Acoustic Eigenmode (BAAE), help to study two fundamental <u>MHD and kinetic</u> waves: Alfvén and acoustic.
- Energetic particle driven low-*f* MHD instabilities mostly result in radial particle transport:
 - On NSTX, bursting low-*f* modes can lead to a significant loss of injected beam ions (Fredrickson'06).
- MHD spectroscopy application for plasma diagnostic:
 - RSAE in low- to medium- β plasma
 - BAAE high- β plasma, such as in STs when RSAEs are suppressed.
- Due to coupling to acoustic branch strong interaction with thermal ions is expected:
 - \Rightarrow strong drive due to fast ions and strong damping due to thermal ions,
 - \Rightarrow potential for energy channeling from beam ions directly to thermal ions (α -channeling, Fisch'93, hot-ion mode, Li-Wall).

Commonly used RSAE eigenmode equation in ideal MHD

Basic equation for dominant poloidal harmonic, *m*.

Coupling to $m \pm 1$ is included in the derivation *(Berk'01, Breizman'03):*

$$\partial_{r}\left[\bar{\omega}^{2}-k_{0}^{2}\left(r\right)\right]\partial_{r}\phi-m^{2}\left[\bar{\omega}^{2}-k_{0}^{2}\left(r\right)\right]\phi+2m^{2}\left(\hat{Q}+\hat{Q}_{k}\right)\phi=0.$$

 \hat{Q}_k is from kinetics. Eigenmodes exist due to $\hat{Q} > 0$. In MHD:

$$\hat{Q} \simeq 2lpha rac{2ar{\omega}^2 \Delta' - lpha k_{00}^2}{1 - 4k_{00}^2 q_{min}^2} + rac{arepsilon lpha}{q_{min}^2} \left(1 - rac{1}{q_{min}^2}
ight) + ar{\omega}^2 rac{arepsilon (arepsilon + 2\Delta')}{1 - 4k_{00}^2 q_{min}^2},$$

$$k_{00} = k_0(r_0), k_0 = k_{\parallel} \Big|_m = m/q - n, q(r_0) = q_{min}, \,\bar{\omega} = \omega R/v_A.$$

Bottom RSAE case dominant (2nd) term is due to pressure gradient (*Fu'06, Gorelenkov'06*)

RSAE eigenmode equation in ideal MHD (part 2)

Introduce new variable $z^2 = (r - r_0)^2 m^2 / r_0^2$, $\varepsilon > 0$,

$$\frac{\partial}{\partial z} \left(1 - z^2\right) \left(1 + \mu z^2\right) \frac{\partial}{\partial z} \phi - S \left(1 - z^2\right) \left(1 + \mu z^2\right) \phi + Q \phi + Q_k \phi = 0$$

where $k_{00} \leq 0$ for down, bottom sweep RSAEs.

- $\mu \simeq 0$ for down sweep RSAEs
- $\mu = 1$ for sweep bottom RSAEs

<u>Down</u>, threshold condition, $\bar{\omega} \simeq k_{00}$: RSAE is emerging from the continuum: $S \ll Q$

For near the <u>bottom</u> RSAEs:

$$S = \sqrt{\mu/B} = \frac{mq_{min}w^2}{r_0^2} \left(\bar{\omega} + k_{00}\right); \quad Q_{bott} \simeq \frac{nw^2}{\left(\bar{\omega} - k_{00}\right)r_0^2} \alpha \varepsilon \frac{q^2 - 1}{q^2}.$$

Analytically treatable frequency down sweeping case, near threshold $Q \gg S > 0$:

$$\frac{\partial}{\partial z} \left(1 - z^2 \right) \frac{\partial}{\partial z} \phi - S\phi + Q\phi = 0$$

with zero boundary conditions at $z \to \pm \infty$ formally RSAE solution is Legendre functions $Q_l(z)$; $P_l(z)$

which have expected $\ln |1 - z|$ singularity at z = 1, and dispersion:

$$Q-S=l\left(l+1\right) .$$

Analytically treatable frequency down sweeping case, near threshold $Q \gg S > 0$:

$$\frac{\partial}{\partial z} \left(1 - z^2 \right) \frac{\partial}{\partial z} \phi - S\phi + Q\phi = 0$$

with zero boundary conditions at $z \to \pm \infty$ formally RSAE solution is

Legendre functions $Q_{l}(z)$; $P_{l}(z)$

which have expected $\ln |1 - z|$ singularity at z = 1, and dispersion:

$$Q-S=l\left(l+1\right) .$$

These solutions are not physical! Why?

Standard analytic extension of RSAEs due to causality condition

Account for singularities at $z = \pm (1 + i\varepsilon)$ or positive growth rates:

Inconsistency of ideal extended MHD solution

Analytic extension of RSAE solution implies symmetric radial mode structure:

Self-consistent theory needs to include kinetic effects (*similar to Timofeev'RoPP75*).

Kinetic RSAEs (kRSAE) eigenmode equation

Have to include FLR effects $\Rightarrow 4^{th}$ order DE - Orr-Sommerferld equation (hydrodynamic stability of the inhomogeneous flow, flute instbility, *Timofeev NF'68,FyzPI'76*):

$$\lambda^2 \frac{\partial}{\partial z} \lambda^{-2} \frac{\partial^3}{\partial z^3} \phi + \lambda^2 \left(\frac{\partial}{\partial z} D \frac{\partial}{\partial z} - SD + Q \right) \phi = 0,$$

 $D = \left(1 - z^2\right) \left(1 + \mu z^2\right),$

• Make use of large $\lambda \gg 1$ ($\rho_i \ll a, n \gg 1$):

$$\lambda^{-2} = \frac{\rho_i^2}{w^2} \frac{n}{\left(\bar{\omega}^2 - k_{00}^2\right)\left(\bar{\omega} + k_{00}\right)} \left[\frac{3}{4}\bar{\omega}^2 + k_0^2 \frac{T_e}{T_i}\left(1 - i\delta_e\right)\right]$$

(Rosenbluth, Rutherford, PRL'75)

• Use asymptotic solutions of Orr-Sommerfeld equations near $z = \pm 1$.

kRSAE asymptotic behavior around "turning" points $z = \pm 1$

Based on earlier works on Bernstein waves (Peratt'72, Rabenstein'58, Wasow'48)

Cross the z = 1, $|1 - z| < \lambda^{-2/3}$, point according to

$$\ln(z-1) \to \ln(1-z) \pm i\pi \pm i\sqrt{\pi} \frac{\exp\left[\mp i\left(5\pi/4 + 2\lambda\sqrt{p}(1-z)^{3/2}/3\right)\right]}{\lambda^{1/2}p^{1/4}(1-z)^{3/4}}$$

Includes

- slow-varying "MHD" solution: $\ln(1-z)$, $i\pi$
- fast-varying KAW oscillatory solution: $(1-z)^{-3/4}$

MHD and KAW oscillatory solutions are coupled at z = 1

Ideal MHD dispersion is still required for slow varying MHD solution.

Inner |z| < 1 KAW oscillatory WKB solution

Assume WKB anzats

$$\phi = \exp\left[i\int^{z}k(z)\,dz\right],\,$$

where $k \sim \lambda \gg 1$, $|z-1| > \lambda^{-2/3}$. Solving

$$\lambda^2 \frac{\partial}{\partial z} \lambda^{-2} \frac{\partial^3}{\partial z^3} \phi + \lambda^2 \frac{\partial}{\partial z} D \frac{\partial}{\partial z} \phi = 0,$$

we find for KAW part

$$\phi \sim \frac{\sqrt{\pi p}\lambda_1}{\lambda^{3/2}D^{3/4}} \exp\left[-i\frac{3\pi}{4} - i\int_z^1 \lambda\sqrt{D}dz\right]$$

which has the same asymptotic as the oscillatory solution at z = 1.

Matching oscillatory left/right solutions near z = 0results in kRSAE dispersion (imaginary part)

Oscillatory part has to decrease (dissipate) to match the MHD imaginary part at $z = 0 \Rightarrow collisonless damping$:

$$\Im \int_0^1 \lambda \sqrt{D} dz \simeq \frac{1}{2} \ln \left(\frac{\lambda_0 \pi}{\lambda_1^2 p} \right) < 0.$$

Dissipation implies damping rate (assuming $|\bar{\gamma}| \ll \bar{\omega} + k_{00}$):

$$\bar{\gamma} \simeq \frac{\rho_i \sqrt{n}}{w} \left[3 + \frac{4T_e}{T_i} \frac{k_{00}^2}{\bar{\omega}^2} \right]^{1/2} \frac{\bar{\omega}^2}{(\bar{\omega} - k_{00})^{3/2}} \ln\left(\frac{\lambda_0 \pi}{\lambda_1^2 p}\right) \frac{1}{\int_0^1 \sqrt{D} dz} < 0.$$

$$w^2 = 2q/|q''|_{q=q_{min}}.$$

Matching oscillatory left/right solutions near z = 0results in kRSAE dispersion (imaginary part)

Oscillatory part has to decrease (dissipate) to match the MHD imaginary part at $z = 0 \Rightarrow collisonless damping$:

$$\Im \int_0^1 \lambda \sqrt{D} dz \simeq \frac{1}{2} \ln \left(\frac{\lambda_0 \pi}{\lambda_1^2 p} \right) < 0.$$

Dissipation implies damping rate (assuming $|\bar{\gamma}| \ll \bar{\omega} + k_{00}$):

$$\bar{\gamma} \simeq \frac{\rho_i \sqrt{n}}{w} \left[3 + \frac{4T_e}{T_i} \frac{k_{00}^2}{\bar{\omega}^2} \right]^{1/2} \frac{\bar{\omega}^2}{(\bar{\omega} - k_{00})^{3/2}} \ln\left(\frac{\lambda_0 \pi}{\lambda_1^2 p}\right) \frac{1}{\int_0^1 \sqrt{D} dz} < 0.$$

$$w^2 = 2q/|q''|_{q=q_{min}}.$$

Ideal MHD limit is weakly damped!

$$\bar{\gamma} = O\left(\rho_{i*} \ln \rho_{i*}\right) \to 0$$

"MHD" singular layer damping model is not correct for kRSAEs. Dissipation is within $\Delta z = \ln \rho_{i*}$ - non perturbative. Real part matching condition splits the mode into several eigenmodes

$$\Re \int_0^1 \lambda \sqrt{D} dz \simeq \frac{\pi}{4} + 2l\pi,$$

 $l \gg 1$ is integer.

kRSAEs split in sub frequencise within $-\bar{\gamma} < \bar{\omega} - \bar{\omega}_{MHD} < \bar{\gamma}$ if $|\bar{\omega} - k_{00}| > \bar{\gamma}$

$$\Delta \bar{\omega} \simeq 4\pi \frac{\rho_i \sqrt{n}}{w} \left[3 + \frac{4T_e}{T_i} \frac{k_{00}^2}{\bar{\omega}^2} \right]^{1/2} \frac{\bar{\omega}^2}{\left(\bar{\omega} - k_{00}\right)^{3/2}} \frac{1}{\int_0^1 \sqrt{D} dz} \ll \bar{\omega}_{MHD}$$

For damped mode with $\bar{\gamma}$ we expect several RSAEs to exist near the MHD frequency $\bar{\omega}_{MHD}$

$$N_{kRSAE} \simeq \frac{-\bar{\gamma}}{\Delta\bar{\omega}} \simeq \frac{-1}{4\pi} \ln\left(\frac{\lambda_0\pi}{\lambda_1^2 p}\right) \simeq -O\left(\ln\rho_i^2 n/w^2\right)/4\pi.$$

Real part matching condition splits the mode into several eigenmodes

$$\Re \int_0^1 \lambda \sqrt{D} dz \simeq \frac{\pi}{4} + 2l\pi,$$

 $l \gg 1$ is integer.

kRSAEs split in sub frequencise within $-\bar{\gamma} < \bar{\omega} - \bar{\omega}_{MHD} < \bar{\gamma}$ if $|\bar{\omega} - k_{00}| > \bar{\gamma}$

$$\Delta \bar{\omega} \simeq 4\pi \frac{\rho_i \sqrt{n}}{w} \left[3 + \frac{4T_e}{T_i} \frac{k_{00}^2}{\bar{\omega}^2} \right]^{1/2} \frac{\bar{\omega}^2}{\left(\bar{\omega} - k_{00}\right)^{3/2}} \frac{1}{\int_0^1 \sqrt{D} dz} \ll \bar{\omega}_{MHD}$$

For damped mode with $\bar{\gamma}$ we expect several RSAEs to exist near the MHD frequency $\bar{\omega}_{MHD}$

$$N_{kRSAE} \simeq \frac{-\bar{\gamma}}{\Delta\bar{\omega}} \simeq \frac{-1}{4\pi} \ln\left(\frac{\lambda_0\pi}{\lambda_1^2 p}\right) \simeq -O\left(\ln\rho_i^2 n/w^2\right)/4\pi.$$

For unstable kRSAE, $\bar{\gamma} = \bar{\gamma}_{drive}$, the number of unstable mode will serve as a way to estimate the growth rate.

Direct numerical solution of kRSAE eigenmode equation vs MHD solution (example)

Direct numerical solution of kRSAE eigenmode equation vs MHD solution (example)

MHD dispersion determines kRSAE eigenfrequency

Find only slow varying, MHD, solution:

$$\frac{\partial}{\partial z} \left(1 - z^2 \right) \left(1 + \mu z^2 \right) \frac{\partial}{\partial z} \phi - S \left(1 - z^2 \right) \left(1 + \mu z^2 \right) \phi + Q \phi = 0$$

General (non threshold) eigenmode equation is solved by minimizing the quadratic form with the proper trial function ($\mu = 0$ as example):

$$\phi = \frac{c_0}{2} \left(z \ln \left| \frac{z+1}{z-1} \right| - 2 \right) + c_0 \frac{i\pi |z|}{2} H \left(1 - |z| \right)$$

produces following dispersion:

$$\Re\left(Q+\langle Q_k\rangle\right)-0.4S=2.$$

Numerical MHD solution frequency is in good agreement with theory solution

q -profile is relaxing from 2.05 to 2.

Theory curve is Q - 0.4S = 2.

Used large aspect ratio, low beta plasma, w = 2, R/a = 10/1, r/a = 0.5, m/n = 20/10, $\beta = 10^{-3} (1 - r^2/a^2)$.

MHD allows to study some basic properties of kRSAEs:

- existence criteria,
- frequency upshift from the Alfvén/acoustic continuum.

How good big ideal MHD codes are?

Apply NOVA for the same plasma conditions

- finite element code,
- apply for sweep bottom kRSAE,
- vary the *q*-profile flatness: higher *w* more flat *q*-profile is,

$$w^2 = 2q/\left.q''\right|_{q=q_{min}}$$

• compare with the direct shooting simulations: Numer. curve.

Theory (WKB, MHD) frequency
$$\bar{\omega} = -\frac{\pi^2}{2^3} \frac{r_0^2}{mqw^2} + \sqrt{\frac{\pi^4}{2^6} \frac{r_0^4}{m^2 q^2 w^4} + \frac{\alpha \varepsilon}{q^2} \left(1 - \frac{1}{q^2}\right)}$$

has limit of quasi-local approximation if $m \gg 1$, or $w \gg r_0$ (neglecting 2^{nd} derivative *r*-dependence, Breizman, Varenna'06).

NOVA produces RSAE structure similar to shooting code results

- NOVA gives approximate kRSAE frequency in agreement with theory.
- Despite having finite elements it seems to pick correct slow verying asymptotics near $z = \pm 1$.
- Radial localization of the mode is predicted.
- Can be used for perturbative addition of the kinetic effects.

NOVA produces RSAE structure similar to shooting code results

- NOVA gives approximate kRSAE frequency in agreement with theory.
- Despite having finite elements it seems to pick correct slow verying asymptotics near $z = \pm 1$.
- Radial localization of the mode is predicted.
- Can be used for perturbative addition of the kinetic effects.

To properly treat continuum resonances ideal MHD codes (NOVA) need kinetic extension

DIII-D experimental evidence of weakly damped bottom/down kRSAEs (PPPL/DIII-D colaboration, R.Nazikian)

This theory selects frequency of down kRSAE and gives $\bar{\gamma} \sim -\frac{\rho_i \sqrt{n}}{w} \sqrt{\bar{\omega}}$.

Summary

- Theory is developed for sweeping down and bottom of the sweep kRSAE modes.
 - kinetic eigenmodes are shown to exist
 - their frequency ($\sim \omega_{MHD})$ and continuum/radiative damping rate are derived
 - kRSAEs are not damped in the zero FLR limit
 - each kRSAE can be splitted into sub-modes within $\gamma < \omega \omega_{MHD} < \gamma$ range,
 - existence criteria of down sweeping RSAEs is developed.

Summary

- Theory is developed for sweeping down and bottom of the sweep kRSAE modes.
 - kinetic eigenmodes are shown to exist
 - their frequency ($\sim \omega_{MHD})$ and continuum/radiative damping rate are derived
 - kRSAEs are not damped in the zero FLR limit
 - each kRSAE can be splitted into sub-modes within $\gamma < \omega \omega_{MHD} < \gamma$ range,
 - existence criteria of down sweeping RSAEs is developed.
- kRSAEs can extend MHD spectroscopy
 - bottom of the sweep kRSAE frequency gives information about the pressure gradient, acoustic mode effects,
 - theory helps to separate finite pressure and pressure gradient effects,
 - frequency splitting should be seen, contains information about the drive,
 - multiple kRSAEs with close frequency should enhance fast ion transport.