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Motivation

NSTX

B(T) 0.45
R0/a(m) 0.85/0.66

βpl/β f ast (%) ∼ 30/15
f ast ions 2MW NBI

• Down sweeping RSAEs are rarely
observed:
– is it due to strong damping or
– due to nonexistence?

• DIII-D and NSTX demonstrate
strong losses when RSAEs are
present.

• Both bottom and down sweep
RSAEs offer a unique opportu-
nity for plasma diagnostics, MHD
spectroscopy. E.D.Fredrickson
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f ast ions 2MW NBI

• Down sweeping RSAEs are rarely
observed:
– is it due to strong damping or
– due to nonexistence?

• DIII-D and NSTX demonstrate
strong losses when RSAEs are
present.

• Both bottom and down sweep
RSAEs offer a unique opportu-
nity for plasma diagnostics, MHD
spectroscopy.

What are the properties of these
modes?

E.D.Fredrickson
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Relation of RSAEs and Alfvén continuum during
q-profile relaxation
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• n = 10, large aspect ra-
tio cylindrical plasma

• q =

qmin/
[

1− (r− r0)
2/a2w2

]

• R/a = 10/1, w = 2,
β (%) = 0.1

(

1− r2/a2
)

.

• We will study down
sweeping and bottom
of the sweep modes.
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Why low- f instabilities are important?

• RSAEs and new class of instabilities, Beta-induced Alfvén Acoustic
Eigenmode (BAAE), help to study two fundamental MHD and kinetic
waves: Alfvén and acoustic.

• Energetic particle driven low- f MHD instabilities mostly result in radial
particle transport:
– On NSTX, bursting low- f modes can lead to a significant loss of

injected beam ions (Fredrickson’06).

• MHD spectroscopy application for plasma diagnostic:
– RSAE in low- to medium- β plasma
– BAAE high-β plasma, such as in STs when RSAEs are

suppressed.

• Due to coupling to acoustic branch strong interaction with thermal
ions is expected:
– ⇒ strong drive due to fast ions and strong damping due to thermal

ions,
– ⇒ potential for energy channeling from beam ions directly to

thermal ions (α-channeling, Fisch’93, hot-ion mode, Li-Wall).

Gorelenkov: kinetic RSAEs 4 of 22



Commonly used RSAE eigenmode equation in ideal
MHD

Basic equation for dominant poloidal harmonic, m.

Coupling to m±1 is included in the derivation
(Berk’01, Breizman’03):

∂r
[

ω̄2− k2
0 (r)

]

∂rφ −m2[ω̄2− k2
0 (r)

]

φ +2m2(Q̂+ Q̂k
)

φ = 0.

Q̂k is from kinetics. Eigenmodes exist due to Q̂ > 0. In MHD:

Q̂ ≃ 2α
2ω̄2∆′−αk2

00

1−4k2
00q2

min

+
εα
q2

min

(

1− 1

q2
min

)

+ ω̄2 ε (ε +2∆′)

1−4k2
00q2

min

,

k00 = k0 (r0), k0 = k‖
∣

∣

m
= m/q−n, q(r0) = qmin, ω̄ = ωR/vA.

Bottom RSAE case dominant (2nd) term is due to pressure
gradient (Fu’06, Gorelenkov’06)
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RSAE eigenmode equation in ideal MHD (part 2)

Introduce new variable z2 = (r− r0)
2 m2/r2

0, ε > 0,

∂
∂ z

(

1− z2)(1+ µz2) ∂
∂ z

φ −S
(

1− z2)(1+ µz2)φ +Qφ +Qkφ = 0

where k00 ≤ 0 for down, bottom sweep RSAEs.

• µ ≃ 0 for down sweep RSAEs

• µ = 1 for sweep bottom RSAEs

Down, threshold condition, ω̄ ≃ k00 :
RSAE is emerging from the continuum: S ≪ Q

For near the bottom RSAEs:

S =
√

µ/B =
mqminw2

r2
0

(ω̄ + k00) ; Qbott ≃
nw2

(ω̄ − k00)r2
0

αε
q2−1

q2 .
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Formal RSAE solution in ideal MHD

Analytically treatable frequency down sweeping case, near
threshold Q ≫ S > 0:

∂
∂ z

(

1− z2) ∂
∂ z

φ −Sφ +Qφ = 0

with zero boundary conditions at z →±∞ formally RSAE solution is

Legendre functions Ql (z) ; Pl (z)

which have expected ln |1− z| singularity at z = 1,

and dispersion:
Q−S = l (l +1) .
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Formal RSAE solution in ideal MHD

Analytically treatable frequency down sweeping case, near
threshold Q ≫ S > 0:

∂
∂ z

(

1− z2) ∂
∂ z

φ −Sφ +Qφ = 0

with zero boundary conditions at z →±∞ formally RSAE solution is

Legendre functions Ql (z) ; Pl (z)

which have expected ln |1− z| singularity at z = 1,

and dispersion:
Q−S = l (l +1) .

These solutions are not physical! Why?
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Standard analytic extension of RSAEs due to causality
condition

Account for singularities at z = ±(1+ iε) or positive growth rates:

z
−1

1
• The contour implies the following transformation rule from z > 1

to z < 1:
ln(z−1) → ln(1− z)− iπ .
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Inconsistency of ideal extended MHD solution

Analytic extension of RSAE solution implies symmetric radial mode
structure:

• eigenfrequency is well deter-
mined

• real part is symmetric

• Q0 (z) has expected singularities
at z = ±1.

• imaginary part does not match
near origin.

Self-consistent theory needs to include kinetic effects (similar to
Timofeev’RoPP75).
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Kinetic RSAEs (kRSAE) eigenmode equation

Have to include FLR effects ⇒ 4th order DE - Orr-Sommerferld equation
(hydrodynamic stability of the inhomogeneous flow, flute instbility, Timofeev
NF’68,FyzPl’76):

λ 2 ∂
∂ z

λ−2 ∂ 3

∂ z3 φ +λ 2
(

∂
∂ z

D
∂
∂ z

−SD+Q

)

φ = 0,

D =
(

1− z2
)(

1+ µz2
)

,

• Make use of large λ ≫ 1 (ρi ≪ a, n ≫ 1):

λ−2 =
ρ2

i

w2

n
(

ω̄2− k2
00

)

(ω̄ + k00)

[

3
4

ω̄2 + k2
0

Te

Ti
(1− iδe)

]

(Rosenbluth, Rutherford, PRL’75)

• Use asymptotic solutions of Orr-Sommerfeld equations near
z = ±1.
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kRSAE asymptotic behavior around “turning” points
z = ±1

Based on earlier works on Bernstein waves
(Peratt’72, Rabenstein’58, Wasow’48)

Cross the z = 1, |1− z| < λ−2/3, point according to

ln(z−1) → ln(1− z)± iπ ± i
√

π
exp
[

∓i
(

5π/4+2λ√p(1− z)3/2/3
)]

λ 1/2p1/4 (1− z)3/4

Includes

• slow-varying “MHD” solution: ln(1− z), iπ

• fast-varying KAW oscillatory solution: (1− z)−3/4
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MHD and KAW oscillatory solutions are coupled at z = 1

z1

z > 1z < 1

Real

Imaginary

0

z

z1

1

Imaginary

Real

(sketch)

Ideal MHD dispersion is still required for slow varying MHD
solution.
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Inner |z| < 1 KAW oscillatory WKB solution

Assume WKB anzats

φ = exp

[

i
∫ z

k (z)dz

]

,

where k ∼ λ ≫ 1, |z−1| > λ−2/3. Solving

λ 2 ∂
∂ z

λ−2 ∂ 3

∂ z3 φ +λ 2 ∂
∂ z

D
∂
∂ z

φ = 0,

we find for KAW part

φ ∼
√π pλ1

λ 3/2D3/4
exp

[

−i
3π
4

− i
∫ 1

z
λ
√

Ddz

]

which has the same asymptotic as the oscillatory solution at z = 1.
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Matching oscillatory left/right solutions near z = 0
results in kRSAE dispersion (imaginary part)

Oscillatory part has to decrease (dissipate) to match the MHD imaginary
part at z = 0 ⇒ collisonless damping:

ℑ
∫ 1

0
λ
√

Ddz ≃ 1
2

ln

(

λ0π
λ 2

1 p

)

< 0.

Dissipation implies damping rate (assuming |γ̄| ≪ ω̄ + k00):

γ̄ ≃ ρi
√

n
w

[

3+
4Te

Ti

k2
00

ω̄2

]1/2 ω̄2

(ω̄ − k00)
3/2

ln

(

λ0π
λ 2

1 p

)

1
∫ 1

0

√
Ddz

< 0.

w2 = 2q/ q′′|q=qmin
.
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Matching oscillatory left/right solutions near z = 0
results in kRSAE dispersion (imaginary part)

Oscillatory part has to decrease (dissipate) to match the MHD imaginary
part at z = 0 ⇒ collisonless damping:

ℑ
∫ 1

0
λ
√

Ddz ≃ 1
2

ln

(

λ0π
λ 2

1 p

)

< 0.

Dissipation implies damping rate (assuming |γ̄| ≪ ω̄ + k00):

γ̄ ≃ ρi
√

n
w

[

3+
4Te

Ti

k2
00

ω̄2

]1/2 ω̄2

(ω̄ − k00)
3/2

ln

(

λ0π
λ 2

1 p

)

1
∫ 1

0

√
Ddz

< 0.

w2 = 2q/ q′′|q=qmin
.

Ideal MHD limit is weakly damped!

γ̄ = O(ρi∗ lnρi∗) → 0

“MHD” singular layer damping model is not correct for kRSAEs .
Dissipation is within ∆z = lnρi∗ - non perturbative.
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Several kRSAEs can be present

Real part matching condition splits the mode into several eigenmodes

ℜ
∫ 1

0
λ
√

Ddz ≃ π
4

+2lπ,

l ≫ 1 is integer.

kRSAEs split in sub frequencise within −γ̄ < ω̄ − ω̄MHD < γ̄ if |ω̄ − k00| > γ̄

∆ω̄ ≃ 4π
ρi
√

n
w

[

3+
4Te

Ti

k2
00

ω̄2

]1/2
ω̄2

(ω̄ − k00)
3/2

1
∫ 1
0

√
Ddz

≪ ω̄MHD

For damped mode with γ̄ we expect several RSAEs to exist near the MHD
frequency ω̄MHD

NkRSAE ≃ −γ̄
∆ω̄

≃ −1
4π

ln

(

λ0π
λ 2

1 p

)

≃−O
(

lnρ2
i n/w2

)

/4π.
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NkRSAE ≃ −γ̄
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≃ −1
4π
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(

λ0π
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1 p

)
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(

lnρ2
i n/w2

)

/4π.

For unstable kRSAE, γ̄ = γ̄drive, the number of unstable mode will
serve as a way to estimate the growth rate.

Gorelenkov: kinetic RSAEs 15 of 22



Direct numerical solution of kRSAE eigenmode
equation vs MHD solution (example)

• Large aspect ratio, low β
plasma: w = 2, R/a = 10/1,
r/a = 0.5, m/n = 20/10, β =
10−3

(

1− r2/a2
)

, λ = 102.

• Only real part of kRSAE is
calculated
– the same MHD frequency

was assumed from
MHD solution.
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Direct numerical solution of kRSAE eigenmode
equation vs MHD solution (example)

• Large aspect ratio, low β
plasma: w = 2, R/a = 10/1,
r/a = 0.5, m/n = 20/10, β =
10−3

(

1− r2/a2
)

, λ = 102.

• Only real part of kRSAE is
calculated
– the same MHD frequency

was assumed from
MHD solution.

• MHD dispersion can be used
for kRSAE frequency with ±|γ̄|
accuracy.
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MHD dispersion determines kRSAE eigenfrequency

Find only slow varying, MHD, solution:

∂
∂ z

(

1− z2
)(

1+ µz2
) ∂

∂ z
φ −S

(

1− z2
)(

1+ µz2
)

φ +Qφ = 0

General (non threshold) eigenmode equation is solved by minimizing the
quadratic form with the proper trial function (µ = 0 as example):

φ =
c0

2

(

z ln

∣

∣

∣

∣

z+1
z−1

∣

∣

∣

∣

−2

)

+ c0
iπ |z|

2
H (1−|z|)

produces following dispersion:

ℜ(Q+ 〈Qk〉)−0.4S = 2.

Gorelenkov: kinetic RSAEs 17 of 22



Numerical MHD solution frequency is in good
agreement with theory solution

q -profile is relaxing from 2.05 to 2.
Theory curve is Q−0.4S = 2.

RSAEs do not exist

(a) (b)

Used large aspect ratio, low beta plasma, w = 2, R/a = 10/1, r/a = 0.5,
m/n = 20/10, β = 10−3

(

1− r2/a2
)

.

MHD allows to study some basic properties of kRSAEs:

• existence criteria,

• frequency upshift from the Alfvén/acoustic continuum.
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How good big ideal MHD codes are?

Apply NOVA for the same
plasma conditions

• finite element code,
• apply for sweep bottom

kRSAE,

• vary the q-profile flat-
ness: higher w more flat
q-profile is,
w2 = 2q/ q′′|q=qmin

• compare with the di-
rect shooting simulations:
Numer. curve.

Theory (WKB, MHD) frequency ω̄ = − π2

23
r2
0

mqw2 +

√

π4

26
r4
0

m2q2w4 + αε
q2

(

1− 1
q2

)

has limit of quasi-local approximation if m ≫ 1, or w ≫ r0 (neglecting 2nd

derivative r-dependence, Breizman,Varenna’06).
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NOVA produces RSAE structure similar to shooting
code results

φ 0(a
.u

.)

NOVA

0
−

1

(a)

1

−0.1 0 0.1

NOVA (b)

r−r0
−0.1 0 0.1

NOVA

−0.1 0 0.1

(c)

• NOVA gives approximate kRSAE frequency in agreement with theory.

• Despite having finite elements it seems to pick correct slow verying
asymptotics near z = ±1.

• Radial localization of the mode is predicted.

• Can be used for perturbative addition of the kinetic effects.

Gorelenkov: kinetic RSAEs 20 of 22
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−0.1 0 0.1

NOVA (b)

r−r0
−0.1 0 0.1

NOVA

−0.1 0 0.1

(c)

• NOVA gives approximate kRSAE frequency in agreement with theory.

• Despite having finite elements it seems to pick correct slow verying
asymptotics near z = ±1.

• Radial localization of the mode is predicted.

• Can be used for perturbative addition of the kinetic effects.

To properly treat continuum resonances ideal MHD
codes (NOVA) need kinetic extension
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DIII-D experimental evidence of weakly damped
bottom/down kRSAEs (PPPL/DIII-D colaboration, R.Nazikian)

DIII-D plasma at qmin = 2,
n = 1.

• Weak time depen-
dence of the ampli-
tude of RSAE from
down-bottom-up, and

• instantaneous re-
sponse to 10msec NBI
blips

⇒ may suggest weak
damping.

This theory selects frequency of down kRSAE and gives γ̄ ∼− ρi
√

n
w

√
ω̄.
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Summary

• Theory is developed for sweeping down and bottom of the
sweep kRSAE modes.
– kinetic eigenmodes are shown to exist
– their frequency (∼ ωMHD) and continuum/radiative damping rate are

derived
– kRSAEs are not damped in the zero FLR limit
– each kRSAE can be splitted into sub-modes within γ < ω −ωMHD < γ

range,

– existence criteria of down sweeping RSAEs is developed.
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Summary

• Theory is developed for sweeping down and bottom of the
sweep kRSAE modes.
– kinetic eigenmodes are shown to exist
– their frequency (∼ ωMHD) and continuum/radiative damping rate are

derived
– kRSAEs are not damped in the zero FLR limit
– each kRSAE can be splitted into sub-modes within γ < ω −ωMHD < γ

range,

– existence criteria of down sweeping RSAEs is developed.

• kRSAEs can extend MHD spectroscopy
– bottom of the sweep kRSAE frequency gives information about the

pressure gradient, acoustic mode effects,
– theory helps to separate finite pressure and pressure gradient effects,

– frequency splitting should be seen, contains information about the drive,
– multiple kRSAEs with close frequency should enhance fast ion transport.
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