Development and Validation of the Next Generation Gyro-Landau-fluid Transport Model (TGLF)

J. Kinsey

in collaboration with G. Staebler, R. Waltz General Atomics

21st Transport Task Force Workshop

Mar. 25 -28, 2008 Boulder, CO

Overview

- Philosophy in developing the Trapped Gyro-Landau-Fluid (TGLF) transport model has been to obtain best fit to gyrokinetic simulations, then use experimental data to test the theory
- Linear benchmarking of TGLF with GKS growth rate database
- Fitting of TGLF saturation rule to a nonlinear database of 83 GYRO ITG/TEM gyrokinetic simulations with shaped geometry
 - QL theory works amazingly well ! TGLF energy fluxes within 20% of GYRO results
 - TGLF shows better agreement with GYRO simulations compared to GLF23 model and reproduces GYRO result of elongation effects on transport, ExB shear
- Testing of TGLF transport model against experimental profile database (over 500 transport runs have been performed)
 - Better fit to theory results in TGLF having better agreement than GLF23 with a database of 96 shots from DIII-D, JET, TFTR

Sensitivity Studies

- Boundary conditions, geometry, ExB shear
- High-k transport
- Finite beta effects, density evolution, boundary location

Summary and future work

The TGLF Gyro-Landau-Fluid transport model

- TGLF is the next generation GLF model with improved comprehensive physics compared to its predecessor, GLF23
 - Model valid continuously from low-k ITG/TEM to high-k ETG
 - Extended range of validity (e.g. pedestal parameters, low aspect ratio)
 - Valid for finite aspect ratio shaped geometry using Miller local equilibrium which replaces $s \alpha$ high aspect ratio shifted circular geometry
 - Includes finite beta physics, improved electron physics
- TGLF solves for the eigenvalues using a set of 15-moment gyro-fluid equations per species for linear drift-wave instabilities using 4 Hermite basis functions (2 species x 15 eqns x 4 basis functions => 120x120 matrix)
 - GLF23 4-moment, 2 species, 1 poloidal trial basis function => 8x8 matrix
- For Miller model, nine parameters are required to describe the local equilibrium¹: κ (elongation), δ (triangularity), q, s (magnetic shear), α (normalized ∇P), A=R₀/r, ∂_rR₀, and gradient factors of κ and δ (s_κ and s_δ)
- TGLF has been systematically verified against a large database of linear growth rates and frequencies created using the GKS gyrokinetic code
- A model for the nonlinear saturation levels of the turbulence using the linear mode growth rates has been found for shaped geometry

TGLF is a major upgrade from GLF23

TGLF

- TIM, ITG, TEM, ETG modes from a single set of equations
- Exact FLR integrals keep accuracy for high-k i.e. k_θρ_i>1
- Adaptive Hermite basis function solution method valid for the same range as the GK equations
- All trapped fractions
- Shaped geometry (Miller model)
- Fully electromagnetic
- New electron-ion collision model fit to pitch angle scattering
- Transport model fit to 83 GYRO runs with kinetic electrons
- 15 moment equations per species
- ≈200 times slower than GLF23

GLF23

- Different equations for low-k (ITG,TEM) and high-k (ETG)
- FLR integrals used Pade approximation valid for low-k
- Parameterized single Gaussian trial wavefunction valid for a limited range of conditions
- Small trapped fraction required.
- Shifted circle (s-α) geometry
- Normally run electrostatic
- Inaccurate electron-ion collision model only for low-k equations
- Transport model fit to a few GLF non-linear turbulence runs
- 4 moment equations per species
- Fast enough for 1997 computers!

Verification of TGLF linear growth rates using GKS gyrokinetic stability analyses

TGLF linear growth rates verified against GKS gyrokinetic stability code for 3 reference cases

- TGLF compared to GKS for numerous scans performed around 3 cases
 - 1799 linear simulations w/ kinetic electrons, s- α geometry, electrostatic
 - Scans in $k_{\theta}\rho_s$, q, s, a/L_T, a/L_n , r/a, Ti/Te
 - See Staebler, Kinsey, Waltz, Phys Plasmas 12, 102508 (2005)
- STD Case: Same parameters used to develop GLF23 transport model in 1996-97

R/a=3	q=2
r/a=0.5	s=1
a/L _T =3	α =0 and β =0
a/L _n =1	$T_i/T_e = 1$

NCS Case

STD Case + $a/L_{Ti}=10$, $a/L_{Te}=4$, s=-0.5

• PED Case

STD Case + r/a=0.75, a/L_T=10, a/L_n=3, q=4, s=3, α =5

TGLF demonstrated an excellent fit to the GKS linear gyrokinetic database with uniform agreement

Model tested around 3 reference cases:

- STD case: R/a=3, r/a=0.5, q=2, s=1, a/L_T=3, a/L_n=1, T_i/T_e=1, α =0 and β =0
- PED case: STD Case + r/a=0.75, a/L_T=10, a/L_n=3, q=4, s=3, α =5
- NCS case: STD Case + a/L_{Ti} =10, a/L_{Te} =4, s=-0.5

Scan No. $\sigma_x = [\sum_i (X_i^{GKS}-X_i^{TGLF})^2 / \sum_i (X_i^{GKS})^2]^{1/2}$ where X = γ or ω

NATIONAL FUSION FACILITY

Avg σ_{v} (PED) = 0.14 (TGLF), 0.54 (ori GLF23)

GENERAL ATOMICS

TGLF shows good agreement with GKS growth rates for DIII-D ITB discharge including real geometry, collisions

- TGLF compared to GKS for DIII-D ITB discharges #84736
- The radial profile of the normalized linear growth rate for k_y = 0.3 and three different physics settings is shown
 - (A) comprehensive physics
 - (B) collisionless, electrostatic
 - (C) s-α geometry dillution, collisionless, electrostatic
- Reduction in growth rates w/ full physics (A) due to finite β in the inner plasma and collisions in the outer plasma

DIII-D NCS discharge 84736 at 1.3s

Fitting of TGLF saturation rule to nonlinear GYRO simulations

TGLF saturation rule was fit to GYRO nonlinear ITG/TEM simulations using Miller geometry

 Transport fluxes are computed using a saturation rule with the magnitude of the total eigenvector

$$\Gamma = \sum_{k_{y}} nc_{s} \left[\frac{\operatorname{Re}\left\langle i\hat{k}_{y}\tilde{\Phi}^{*}\tilde{n}\right\rangle}{\tilde{V}^{*}\tilde{V}} \right] \overline{V}^{2} \quad \mathcal{Q} = \frac{3}{2} \sum_{k_{y}} pc_{s} \left[\frac{\operatorname{Re}\left\langle i\hat{k}_{y}\tilde{\Phi}^{*}\tilde{p}_{T}\right\rangle}{\tilde{V}^{*}\tilde{V}} \right] \overline{V}^{2} \quad [] = \text{quasilinear weight}$$

$$\overline{V}^{2} = C_{norm} \left(\frac{\rho_{s}\hat{\omega}_{d0}}{a} \right)^{2} \left(1 + \frac{T_{e}}{T_{i}} \right)^{2} \left(\frac{1}{\hat{k}_{y}^{c_{k}}} \right) \left[\frac{\hat{\gamma}_{net}^{c_{1}} + c_{2}\hat{\gamma}_{net}}{\hat{k}_{y}^{4}} \right] \quad \text{Model for saturated intensity}$$

$$C_{norm} = 32.5$$
 $c_1 = 1.55$ $c_2 = 0.534$ $\alpha_E = 0.3\sqrt{\kappa}$ $0.1 \le \hat{k}_y \le 24$ (21 modes)

$$\tilde{\mathbf{V}} = \left(\tilde{\mathbf{n}}, \tilde{\mathbf{u}}_{\parallel}, \tilde{\mathbf{p}}_{\parallel}, \tilde{\mathbf{p}}_{\mathrm{T}}, \tilde{\mathbf{q}}_{\parallel}, \tilde{\mathbf{q}}_{\mathrm{T}}\right) \qquad \hat{\gamma}_{net} = Max \left[\left(\hat{\gamma} - \alpha_{E} \hat{\gamma}_{E}\right) / \hat{\omega}_{d0}, 0 \right] \qquad \hat{\omega}_{d0} = \hat{k}_{y} \frac{a}{R}$$

 Coefficients & exponents in the saturation rule are found by minimizing the error between TGLF & GYRO energy fluxes for 83 nonlinear GYRO ITG/TEM simulations

$$c_k = 0.0 \quad for \quad \hat{k}_y < 1$$

• The high-k ($\hat{k}_y > 1$) part of the electron energy flux is adjusted to fit one GYRO coupled ITG/TEM-ETG simulation of the GA STD case with Miller geometry by modifying the k_y exponent

$$c_k = 1.25$$
 for $\hat{k}_y \ge 1$

TGLF saturation rule fits the energy transport from 83 nonlinear GYRO Miller geometry simulations very well

- GYRO scans : kinetic electrons, Miller geometry, electrostatic, collisionless
 - Also a version of TGLF fit to 86 shifted circle GYRO simulations
- Use the 2 most unstable modes at each k_v
- Best fit has RMS errors of [17%, 20%] for [ion, electron] energy fluxes

GLF23 fluxes are a poor fit to GYRO nonlinear shifted circle simulations

• The RMS errors between GLF23 and GYRO for the 86 shifted circle cases are

$$\sigma_{Q_i} = 42\%, \ \sigma_{Q_e} = 78\%, \ \sigma_{\Gamma} = 78\%,$$

• GLF23 is systematically high, especially for the electron energy flux

J. Kinsey - TTF08

TGLF demonstrates better agreement with GYRO nonlinear simulations than GLF23

- TGLF matches GYRO a/LT scan around GA-STD case with Miller geometry
 - STD case: R/a=3, r/a=0.5, q=2, s=1, a/L_T=3, a/L_n=1, \kappa=1.0, \delta=0, \beta=0, \nu_{ei}=0
- GLF23 low-k electron energy transport is systematically too large (red dashed line) and misses critical temperature gradient
- TGLF reproduces stabilizing effect of elongation seen in GYRO simulations

J. Kinsey - TTF08

Linear ExB shear quench rule has been implemented in TGLF and shows good agreement with GYRO simulations

- TGLF compared to GYRO ExB shear scans for STD case with Miller geometry, different values of κ, δ=0, low-k only, kinetic electrons*
- ExB shear rate with multiplier $\alpha_{\rm E}$ is subtracted from maximum growth rate at each $k_{\theta}\rho_{s}$

$$\hat{\gamma}_{net} = Max \left[\left(\hat{\gamma} - \alpha_E \hat{\gamma}_E \right) / \hat{\omega}_{d0}, 0 \right]$$

Here,

$$\alpha_E = 0.3\sqrt{\kappa}$$

gives a good fit to GYRO ExB shear simulations with Miller geometry.

See Kinsey, et al, Phys. Plasmas 14, 102306 (2007)

Validation of the TGLF transport model against experimental profile database

A profile database of 96 Discharges from DIII-D, JET, and TFTR has been assembled for model testing

- The database is comprised of conventional L- and H-mode discharges
 - 25 DIII-D L-, 33 DIII-D H-, 22 JET H-, 16 TFTR L-mode discharges
 - Most of JET and all of TFTR discharges in ITPA Profile Database
 - Most discharges are from parameter scans including $\rho^*, \nu^*, \beta, q, Ti/Te, v_{\phi}$
 - Only considered discharges with toroidal rotation (v_{ϕ}) data present
 - 96 shot database supplemented with DIII-D hybrid database (27 shots)

Simulation methodology

- TGLF and GLF23 run in the XPTOR transport code and treated equally with same solver and data
- Predict core Te and Ti profiles for a single time-slice taking densities, toroidal rotation profiles, equilibrium, sources, sinks from experimental analyses
- Boundary conditions enforced at ρ =0.84 for L-, H-modes
- First TGLF runs are electrostatic with hydrogenic ions only
- Chang-Hinton neoclassical, neoclassical poloidal rotation for ExB shear
- TGLF simulations performed on local Linux cluster usually with 40 processors CPU time ≈ 10 mins for 40 grid pts, 40 processors

Validation metrics for testing against experimental data

• Quantitative agreement measured by global and local figures of merit

Avg. and RMS in the incremental stored energy W_{inc} for ith discharge

$$\left\langle R_{W}\right\rangle = 1/N \sum_{i} W_{s,i}/W_{x,i} \qquad \Delta R_{W} = \sqrt{1/N \sum_{i} \left(W_{s,i}/W_{x,i} - 1\right)^{2}}$$

ITER Physics Basis, CH 2, Nucl. Fusion 39, 2220 (1999)

RMS and offset for temperature T profile at each jth radial pt for ith discharge (same definition as used for benchmarking fluxes and growth rates)

$$\sigma_{T,i} = \sqrt{\sum_{j} \varepsilon_{j}^{2}} / \sqrt{\sum_{j} T_{x,i}^{2}} \qquad f_{T,i} = \frac{1}{N} \sum_{j} \varepsilon_{j} / \sqrt{\frac{1}{N} \sum_{j} T_{x,j}^{2}}$$

 $\varepsilon_j = T_{x,j} - T_{s,j}$ Deviation between Exp. Temp (T_x) and Simulation (T_s)

Works for negative quantities like particle diffusivity, toroidal rotation Avg RMS and offset for each dataset

$$\overline{\sigma}_T = \sqrt{\frac{1}{N} \sum_{i} \sigma_{T,i}^2} \qquad \qquad \overline{f}_T = \frac{1}{N} \sum_{i} f_{T,i}$$

TGLF exhibits lower average global errors than GLF23 for a large L- and H-mode profile database of 96 discharges

- Database: 25 DIII-D L-,33 DIII-D H-, 22 JET H-, 16 TFTR L-mode discharges
 - Supplemental DIII-D hybrid database = 27 discharges
- Avg RMS errors in W_{inc} is 19% for TGLF, 36% for GLF23
- Offset in W_{inc} much smaller for TGLF (2% vs 16%)
- Avg RMS error in W_{tot} is ΔR_{Wtot} =10% for TGLF, 20% for GLF23

Local errors show TGLF model has fairly uniform agreement across DIII-D, JET, and TFTR discharges

- Avg RMS error for [T_i,T_e] = [15%,16%]
 - RMS errors in profiles computed outside q=1 to avoid influence by sawteeth
- TGLF Avg RMS error for T_e smallest for H-modes, largest for DIII-D & TFTR L-modes
- TGLF has a small offset for DIII-D L- and H-modes and JET H-modes, but systematically overpredicts T_i,T_e for DIII-D and TFTR L-modes

TGLF model has lower overall RMS errors and offsets in the temperature profiles than the GLF23 model

- TGLF has avg RMS error for [T_i,T_e] of [15%,16%], GLF23 has [31%,23%]
 - Comparable RMS errors for DIII-D L-, H-modes, and hybrids, but TGLF has noticably lower errors for JET and TFTR
- TGLF has a smaller offsets JET and TFTR than GLF23
- TGLF has larger negative T_i offsets but smaller T_e offsets for DIII-D H-modes & hybrids

Sensitivity studies

Sensitivity to Boundary Conditions: TGLF simulations show L-mode profiles less sensitive to boundary temperatures than H-mode profiles for DIII-D

- A measure of the sensitivity to the boundary temperature ("stiffness") is the ratio of the change in central temperature to the change in boundary temperature, $\Delta T_{io}/\Delta T_{BC}$
- The edge boundary temperatures were varied around the exp. values by +- 30% for a DIII-D H-mode and +-50% for a DIII-D L-mode

J. Kinsey - TTF08

GENERAL ATOMICS

Sensitivity to Geometry: Miller geometry improves the agreement of TGLF with experimental profiles

- Miller geometry yields very little improvement for shaped tokamaks (DIII-D, JET) but yields surprisingly noticeable improvement for TFTR which is circular
 - Finite aspect ratio in Miller geometry increases transport in TFTR compared to $s-\alpha$ but is compensated by elongation in shaped tokamaks (DIII-D, JET)

J. Kinsey - TTF08

Transport is significantly higher for STD case going from s- α geometry to Miller geometry with κ =1.0

- GYRO simulations varying r/a for STD case show larger χ 's with Miller finite aspect ratio geometry compared to infinite aspect ratio s- α geometry
 - Elongation shear (and elongation) stabilization compensates for this in DIII-D
 - GYRO κ =1.5 results for χ_i close to s- α result, χ_e still higher than s- α
 - Assumed $s_{\kappa} = (\kappa 1)/\kappa$ for elongation shear

J. Kinsey - TTF08

Elongation shear is more stabilizing than just the local κ

• Miller shaped finite aspect ratio equilibrium model depends on both κ and s_{κ}

$$s_{\kappa} = \frac{r}{\kappa} \frac{\partial \kappa}{\partial r} \cong \frac{\kappa - \kappa_{o}}{\kappa}$$

where κ_{o} is the central κ value

κ only, no elongation shear

elongation shear only, κ fixed

J. Kinsey - TTF08

Sensitivity to ExB Shear: TGLF with ExB shear quench rule reproduces the observed change in transport in a DIII-D hybrid rotation scan

- Toroidal rotation varied by 3x, beam power changed to keep β fixed (Politzer APS07 talk)
- TGLF shows ExB shear more important in high rotation case
- ExB shear has much less impact on T_e for hybrids because the electron transport is dominated by high-k modes

Sensitivity to ExB Shear: TGLF with ExB shear quench rule reproduces the observed change in transport in a DIII-D hybrid rotation scan

- Toroidal rotation varied by 3x, beam power changed to keep β fixed (Politzer APS07 talk)
- TGLF shows ExB shear more important in high rotation case •
- ExB shear has much less impact on $\rm T_e$ for hybrids because the electron • transport is dominated by high-k modes

J. Kinsey - TTF08

Sensitivity to ExB Shear: TGLF results also show that ExB shear is less important in low q95 hybrid discharges

- Toroidal rotation varied by 2x in hybrid pair w/ $q_{95}=3.1$
 - q₉₅=5.0 for discharge pair on previous slide
- Like high q₉₅ pair, ExB shear more important in high rotation case
- Modeling of 10 low and high q₉₅ shots shows TGLF tends to underpredict the profiles for high q₉₅ and overpredict the profiles for low q₉₅

Sensitivity to ExB Shear: DIII-D disharges have been modeled with TGLF using E_r Data to compute the ExB shear

- TGLF modeling of DIII-D discharges using experimental radial electric field data yields approximately the same predicted temperatures as those obtained computing ExB shear with neoclassical poloidal velocity
- 15 L- and H-mode discharges modeled w/ E_r data
- More noticable differences may appear in ITBs and H-mode pedestal regions

J. Kinsey - TTF08

😓 GENERAL ATOMICS

Sensitivity to High-k Modes: TGLF predicts high-k modes can dominate the electron transport in the plasma core

- ETG coefficient in saturation rule determined by fitting GYRO simulation of GA STD case where $\chi_{e,high-k} / \chi_{e,total} = 11\%$ (k_y > 1, µ=30)
- TGLF has lower low-k contribution to χ_e than GLF23
- Suppression of ITG/TEM transport by ExB shear results in high values of $\chi_{e,high-k}$ / χ_e as χ_i approaches neoclassical
 - Low q_{95} hybrids have largest $\chi_{e,high\text{-}k}$ / χ_e , L-modes have lowest $\chi_{e,high\text{-}k}$ / χ_e

Sensitivity to Density Evolution: TGLF reproduces peaked density profiles and has low RMS errors for database

- Density evolved along w/ Te, Ti with feedback on wall source to match line avg. density using the impurity, fast ion densities from exp. analyses
 - Avg. σ_{ne} = 12% for 96 discharge database
- RMS error in [Ti,Te] virtually unchanged from [15%,16%]

n

n.

ſGLF

Data TGLF

• Data

0.80

1.0

DIII-D L-mode #101391

8 -t = 2.79 secs

a=1

0.20

0.40

0.60

ρ

Avg. O _{ne} , r _{ne} for q>1			
DIII-D L-	8 %, +1.2%		
DIII-D H-	12 %, +8.0%		
JET H-	16 %, +8.3%		

9 %, +3.4%

TFTR L-

n (10¹⁹ m⁻³)

6

4

2

0.0

J. Kinsey - TTF08

Sensitivity to Finite Beta: Finite β found to be mildly stabilizing in the plasma core of discharges in database

- For STD case, energy fluxes decrease with β , then increase above ideal limit
 - Magnetic flutter contribution not agreeing with GYRO, further work needed
- RMS in T_i for hybrids decreases from 15% to 12% with finite β , smaller change in rms errors for DIII-D H-mode database

J. Kinsey - TTF08

TGLF Typically Underestimates Transport In Near Edge Simulations of DIII-D L-mode Discharges

- Boundary conditions have been extended to ρ =0.96 with Te, Ti predicted
 - Nearly a dozen DIII-D L-mode discharges modeled
 - Predicting the density also for #101391 did not alter the temp. profile predictions
- More TGLF and GYRO comparisons needed for L-mode edge conditions

TGLF shows good agreement with GYRO Miller geometry low-k simulations for large values of r/a

- R/a held fixed along with other local quantities, essentially a scan in trapped fraction, r/R
 - r/R = (r/a) / 3 since R/a=3.0
- Where is the missing transport coming from ?
 - TGLF agrees w/ GYRO for STD case parameters, but s > 2 typical at ρ >0.75 for DIII-D

TGLF overpredicts central Te profile in DIII-D discharges with density peaking

8.0

7.0

6.0

5.0

4.0

3.0

DIII-D #125498 3150

• Data

TGI F

Data

TGLF

-- TGLF, no ExB

TGLF, no ExB

High q₉₅

- High q95 hybrid cases show more density peaking than low 95 cases in this group of DIII-D shots
- ETG threshold is sensitive to a/Lne
 - Peaking decreases transport

J. Kinsey - TTF08

Insufficient Particle Transport Close To Magnetic Axis in DIII-D Hybrid Discharges With Low ITG/TEM Transport

- Neoclassical particle transport taken to be equal to χ_e neoclassical
 - D_{neo} enhanced to 20 χ_e neoclassical when q<1
- Central density profiles overpredicted in DIII-D hybrid discharges with strong ExB shear stabilization

Summary

- Quasilinear saturation rule in TGLF shows remarkable agreement with large GYRO transport database of 83 simulations with Miller geometry !
- An ExB shear quench rule has been implemented in TGLF that fits GYRO nonlinear simulations at various elongations
 - Quench rule well validated by rotation scans in DIII-D hybrid database, ExB shear more important in high rotation cases and high q95 cases

• Better fit to theory (GYRO) resulted in better predictions of exp. data

- Comparison between the TGLF and GLF23 models for a database of 96 discharges from DIII-D, JET, and TFTR shows that TGLF exhibits 19% [2%] RMS [offset] error in Winc versus 36% [16%] for GLF23
- Over 500 transport runs !
- Average RMS errors in $[T_i, T_e]$ are [15%, 16%] for TGLF, [31%, 23%] for GLF23
- TGLF predicts the high-k/ETG modes dominate the electron energy transport when the ion energy transport approaches neoclassical
 - ETG dominant contributor to χ_e in DIII-D hybrid discharges
 - High-k modes predicted to be important in the deep core of L- and H-modes
- TGLF accurately predicts density profile shapes with an average RMS error of 12% for 96 discharge database

Where do we go from here?

• Modeling/Theory

- Include parallel velocity shear in TGLF equations, predict momentum transport including ITB discharges and intrinsic rotation cases
- Study kinetic impurity effects in TGLF (see Staebler's poster)
- More GYRO and TGLF studies needed
 - L-mode near edge conditions (e.g. high magnetic shear, high collisionality)
 - More ETG simulations for various conditions using Miller geometry
- Extend modeling toward edge region
 - Move from Miller equilibrium model to actual equilibria (e.g EFITs)
- Why are H-modes systematically overpredicted and L-modes underpredicted ?
- Deep core ETG transport sensitive to core density profile (e.g. DIII-D hybrids)
- Rescale CX and ionization flows as wall neutral source is rescaled
- Test model with high beta and for low aspect ratio (NSTX and MAST)
- Model perturbative experiments (e.g modulated ECH)
- Improve sawtooth model in transport code
- More accurate neoclassical particle transport needed (i.e. near axis)
- Replace ExB shear rule with rotational ballooning mode net linear growth rate model; χ vs γ_{E} curve changes shape with aspect ratio
- Include nonlocal effects, small effect of turbulent exchange
- Revisit ITER projections

Where do we go from here?

• Experimental analyses

- In general, we need the highest standard of data analysis
- C-mod data
- Kinetic EFITs
- Accurate fits to raw data near edge
- Improve assessment of error bars
- Scrutinize sources (particle, energy)
- Examine effects of atomic physics
- Other possible data issues:
 - MHD activity
 - time derivative terms
 - fast ion losses
 - beam deposition
 - dilution

Backup slides

Agreement can also be quantified using raw experimental data points and computing a reduced χ^2

- RMS errors and offsets we have used compare the model predictions with fitted experimental profiles
 - Doesn't take into consideration scatter in raw data as well as the error bars in the data
 - Doesn't distinguish between older and newer (often less scatter, smaller error bars) data

where $\sigma_{\mbox{\scriptsize bar}}\mbox{=}\mbox{raw}$ data error bar for j^{\mbox{\scriptsize th}} radial pt

• Reduced χ^2 varies depending on size of error bars

TGLF reproduces observed change in confinement as the toroidal rotation varies in a TFTR torque scan

- Toroidal velocity varied by changing mix of co- and ctr- NBI
- Less NBI power needed in high rotation cases to achieve same stored energy as low rotation cases at same density

J. Kinsey - TTF08

Linear GKS Database for TGLF Testing

Scan	Set	Scan type	# pts
1	STD	ky scan (0.01→ 0.70) @ various q (1–5)	80
2	STD	shear scan (-1 \rightarrow 2) @ v arious q (1–5)	55
3	STD	shear scan (-1 \rightarrow 2) @ v arious q (1–5), α =1	55
4	STD	ky scan (0.01 \rightarrow 0.70) @ various a/L _T (2 \rightarrow 5)	64
5	STD	ky scan (0.01 \rightarrow 0.70) @ various T _i /T _e (0.5 \rightarrow 2.0)	64
6	STD	a/L _T scan (0 \rightarrow 3) @ v arious a/L _n (1 \rightarrow 2)	80
7	STD2	ky scan (0.75→ 3.0) @ various q (1–5)	80
8	STD2	shear scan (-1→ 2) @ q=1.2,1.4,1.6	64
9	STD2	shear scan (-3→ 3) @ q=2,4	32
10	STD2	shear scan (-1→ 2) @ v arious q (1–5), ky=0.15	55
11	STD2	shear scan (-1→ 2) @ v arious q (1–5), ky =0.45	55
12	STD2	ky scan (0.10→ 2.0) @ q=2,4 w/ a/L _T =6	32
13	STD2	ky scan (2.0→ 24.0) @ q=2,4 w/ a/L _T =6	32

* STD = 398 GKS runs, STD2 = 310 GKS runs

STD case: R/a=3.0, r/a=0.5, q=2.0, s=1.0, α =0, α/L_{T} =3.0, α/L_{n} =1.0, T_{i}/T_{e} =1.0, v=0, β =0 TEM1 Case: STD w/ α/L_{n} =2, α/L_{T} =2 TEM2 Case: STD w/ α/L_{n} =3, α/L_{T} =1 PED case: R/a=3.0, r/a=0.75, q=4.0, s=3.0, α =5, α/L_{T} =10.0, α/L_{n} =3.0, T_{i}/T_{e} =1.0, v=0, β =0

Linear GKS Database for NCS, PED Cases

Scan	Set	Scan type	# pts
14	NCS	ky scan (0.01→0.70) @ various q (1→5)	80
15	NCS	shear scan (-1→2) @ various q(1→5)	55
16	NCS	shear scan (-1→2) @ various q(1→5), α=1	55
17	NCS	shear scan (-1→2) @ various q(1→5), α=2	55
18	NCS	shear scan (-1→2) @ various q(1→5), α=3	55
19	NCS	shear scan (-1→2) @ various q(1→5), α=4	55
20	NCS	ky scan (0.01→0.70) @ various a/L _T (2→5)	64
21	NCS	ky scan (0.01→0.70) @ v <i>ar</i> ious T _i /T _e (0.5→2.0)	64
22	PED	ky scan (0.01→0.70) @ various q (3→7)	80
23	PED	shear scan (1→7) @ various q (3→7), α=0	80
24	PED	shear scan (1→7) @ various q (3→7), α=3	80
25	PED	shear scan (1→7) @ various q (3→7), α=6	80
26	PED	shear scan (1→7) @ various q (3→7), α=9	80
27	PED	shear scan (1→7) @ various q (3→7), α=12	80
28	PED	ky scan (0.01→0.70) @ various a/L _T (7→12), α=0	64
29	PED	ky scan (0.01→0.70) @ v <i>ar</i> ious T _i /T _e (0.5→2.0)	64

* NCS = 483 GKS runs, PED = 608 GKS runs

Transport Database for TGLF Testing

Scan	Set	Scan type	# pts
1	STD	Magnetic shear scan @ MHD alpha=0, 1, 2	20
2	STD	Magnetic shear scan @ a/Ln=0.5, 1.5	12
3	STD	Magnetic shear scan @ q=1.25	7
4	STD	Safety factor scan @ s=1.0	7
5	STD	a/L _T scan @ a/L _n =0.5, 1.0, 1.5	27
6	STD	T _i / T _e scan (0.5, 1.0, 1.5, 2.0)	4
7	STD	r⁄a scan (0.10, 0.25, 0.50, 0.75, 1.0)	5
8	STD	R/a scan (1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0)	7
9	TEM1	Safety factor scan (q=1.1, 1.25, 2.0, 2.5, 3.0, 4.0)	6
10	TEM1	Magnetic shear scan @ q=2	4
10	TEM2	Safety factor scan (q=1.1, 1.5, 2.0, 2.5, 3.0, 4.0)	6
11	STD	a/L _n scan @ a/L _T =2.0, 3.0	7
12	STD	a/L _T scan @ r/a=0.75	6
13	PED	Magnetic shear scan (s=1.0, 1.5, 2.0, 2.5, 3.0)	5
14	PED	a/L _T scan	4
15	STD	Safety factor scan @ s=-0.5, 1.0, 1.5	20
16	TEM2	Safety factor scan @ s=1.0	6
17	TEM1	Magnetic shear scan @ q=2	7
18	TEM2	Magnetic shear scan @ q=2	8
19	STD	Collisionality scan (v _{ei} =0.0 – 0.5)	8
20	STD	ExB shear scan (γ _E =0.0 – 0.4, γ _p =0)	5
21	STD	Elongation scan scan w/ Miller geometry , κ =1.0 (κ =1.0–2.5)	7
22	STD	Triangularity scan w/ Miller geometry, κ =1.0 (δ =0.0–0.75)	4
23	STD	Aspect ratio (R/a) scan w/ κ=1.0 (A=1.2–4.0)	5

Database used in fitting

STD case: R/a=3.0, r/a=0.5, q=2.0, s=1.0, α =0, α/L_T =3.0, α/L_n =1.0, T_i/T_e =1.0, ν =0, β =0 TEM1 Case: STD w/ α/L_n =2, α/L_T =2 TEM2 Case: STD w/ α/L_n =3, α/L_T =1 PED case: R/a=3.0, r/a=0.75, q=4.0, s=3.0, α =5, α/L_T =10.0, α/L_n =3.0, T_i/T_e =1.0, ν =0, β =0

Experimental Data and Theory Issues Need Addressing in Order to Move Transport Simulations beyond ρ =0.84

- RMS errors increase noticably for DIII-D and TFTR L-modes when ρ_{BC} changed from 0.84 to 0.90
- Experimental analysis issues
 - Sharp changes in q-profiles near edge, non monotonic magnetic shear
 - More accurate equilibrium (e.g. EFITs) needed
 - Better Zeff measurements which impacts ion density profile
 - Toroidal rotation profile, held fixed in these simulations

• Theory/modeling issues

- ExB shear quench rule needs further examination (GYRO shows elongation dependence)
- More ETG simulations needed for near edge conditions
- Low a/Lt, TEM regime needs further study
- More comparisons between TGLF and GYRO for edge conditions

