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Overview

• Philosophy in developing the Trapped Gyro-Landau-Fluid (TGLF)
transport model has been to obtain best fit to gyrokinetic simulations,
then use experimental data to test the theory

• Linear benchmarking of TGLF with GKS growth rate database

• Fitting of TGLF saturation rule to a nonlinear database of 83 GYRO
ITG/TEM gyrokinetic simulations with shaped geometry
– QL theory works amazingly well ! TGLF energy fluxes within 20% of GYRO results
– TGLF shows better agreement with GYRO simulations compared to GLF23 model and

reproduces GYRO result of elongation effects on transport, ExB shear

• Testing of TGLF transport model against experimental profile database
(over 500 transport runs have been performed)
– Better fit to theory results in TGLF having better agreement than GLF23 with a database

of 96 shots from DIII-D, JET, TFTR

• Sensitivity Studies
– Boundary conditions, geometry, ExB shear
– High-k transport
– Finite beta effects, density evolution, boundary location

• Summary and future work
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The TGLF Gyro-Landau-Fluid transport model

• TGLF is the next generation GLF model with improved comprehensive
physics compared to its predecessor, GLF23

– Model valid continuously from low-k ITG/TEM to high-k ETG
– Extended range of validity (e.g. pedestal parameters, low aspect ratio)
– Valid for finite aspect ratio shaped geometry using Miller local equilibrium which

replaces s-α high aspect ratio shifted circular geometry

– Includes finite beta physics, improved electron physics

• TGLF solves for the eigenvalues using a set of 15-moment gyro-fluid
equations per species for linear drift-wave instabilities using 4 Hermite
basis functions (2 species x 15 eqns x 4 basis functions => 120x120 matrix)
– GLF23 4-moment, 2 species, 1 poloidal trial basis function => 8x8 matrix

• For Miller model, nine parameters are required to describe the local
equilibrium 1 :  κ (elongation), δ (triangularity), q, s (magnetic shear),
α (normalized ∇P) , A=R0/r, ∂rR0, and gradient factors of κ and δ (sκ and sδ)

• TGLF has been systematically verified against a large database of linear
growth rates and frequencies created using the GKS gyrokinetic code

• A model for the nonlinear saturation levels of the turbulence using the
linear mode growth rates has been found for shaped geometry
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TGLF is a major upgrade from GLF23

                              TGLF
• TIM, ITG,TEM, ETG modes from a

single set of equations
• Exact FLR integrals keep

accuracy for high-k i.e. kθρi>1
• Adaptive Hermite basis function

solution method valid for the
same range as the GK equations

• All trapped fractions
• Shaped geometry (Miller model)
• Fully electromagnetic
• New electron-ion collision model

fit to pitch angle scattering
• Transport model fit to 83 GYRO

runs with kinetic electrons
• 15 moment equations per species
• ≈200 times slower than GLF23

                       GLF23
• Different equations for low-k

(ITG,TEM) and high-k (ETG)
• FLR integrals used Pade

approximation valid for low-k
• Parameterized single Gaussian

trial wavefunction valid for a
limited range of conditions

• Small trapped fraction required.
• Shifted circle (s-α) geometry
• Normally run electrostatic
• Inaccurate electron-ion collision

model only for low-k equations
• Transport model fit to a few GLF

non-linear turbulence runs
• 4 moment equations per species
• Fast enough for 1997 computers!
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Verification of TGLF linear growth rates

using GKS gyrokinetic stability analyses
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TGLF linear growth rates verified against GKS gyrokinetic
stability code for 3 reference cases

• TGLF compared to GKS for numerous scans performed around 3 cases
− 1799 linear simulations w/ kinetic electrons, s-α geometry, electrostatic

− Scans in kθρs, q, s, a/LT, a/Ln , r/a, Ti/Te
− See Staebler, Kinsey, Waltz, Phys Plasmas 12, 102508 (2005)

• STD Case: Same parameters used to develop GLF23 transport model in
1996-97

R/a=3 q=2
r/a=0.5 s=1
a/LT=3 α=0 and β=0
a/Ln=1 Ti/Te=1

• NCS Case
STD Case + a/LTi=10, a/LTe=4, s=-0.5

• PED Case
STD Case + r/a=0.75, a/LT=10, a/Ln=3, q=4, s=3, α=5
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TGLF demonstrated an excellent fit to the GKS linear
gyrokinetic database with uniform agreement

• Model tested around 3 reference cases:
– STD case: R/a=3, r/a=0.5, q=2, s=1, a/LT=3, a/Ln=1, Ti/Te=1, α=0 and β=0
– PED case: STD Case + r/a=0.75, a/LT=10, a/Ln=3, q=4, s=3, α=5
– NCS case: STD Case + a/LTi=10, a/LTe=4, s=-0.5

Avg σγ (STD) = 0.13 (TGLF), 0.21 (ori GLF23) Avg σγ (PED) = 0.14 (TGLF), 0.54 (ori GLF23)

σx=[ ∑i (Xi
GKS-Xi

TGLF)2 / ∑i (Xi
GKS )2]1/2 where X = γ or ω
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TGLF shows good agreement with GKS growth rates for
DIII-D ITB discharge including real geometry, collisions

• TGLF compared to GKS for DIII-D
ITB discharges #84736

• The radial profile of the normalized
linear growth rate for ky = 0.3 and
three different physics settings is
shown

– (A) comprehensive physics
– (B) collisionless, electrostatic
– (C) s-α geometry dillution,

collisionless, electrostatic

• Reduction in growth rates w/ full
physics (A) due to finite β in the
inner plasma and collisions in the
outer plasma

DIII-D NCS discharge 84736 at 1.3s
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Fitting of TGLF saturation rule to

nonlinear GYRO simulations
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TGLF saturation rule was fit to GYRO nonlinear
ITG/TEM simulations using Miller geometry

• Coefficients & exponents in the saturation rule are found by
minimizing the error between TGLF & GYRO energy fluxes for 83
nonlinear GYRO ITG/TEM simulations

• The high-k (ky > 1) part of the electron energy flux is adjusted to fit
one GYRO coupled ITG/TEM-ETG simulation of the GA STD case with
Miller geometry by modifying the ky exponent
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TGLF saturation rule fits the energy transport from 83
nonlinear GYRO Miller geometry simulations very well

• GYRO scans : kinetic electrons, Miller geometry, electrostatic, collisionless
– Also a version of TGLF fit to 86 shifted circle GYRO simulations

• Use the 2 most unstable modes at each ky

• Best fit has RMS errors of [17%, 20%] for [ion, electron] energy fluxes
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GLF23 fluxes are a poor fit to GYRO nonlinear
shifted circle simulations

• The RMS errors between GLF23 and GYRO for the 86 shifted circle cases are

• GLF23 is systematically high, especially for the electron energy flux

! 

"Qi
= 42%,  "Qe

= 78%,  "# = 78%,  



J. Kinsey - TTF08

TGLF demonstrates better agreement with GYRO
nonlinear simulations than GLF23
• TGLF matches GYRO a/LT scan around GA-STD case with Miller geometry

– STD case: R/a=3, r/a=0.5, q=2, s=1, a/LT=3, a/Ln=1, κ=1.0, δ=0, β=0, νei=0

• GLF23 low-k electron energy transport is systematically too large (red dashed line)
and misses critical temperature gradient

• TGLF reproduces stabilizing effect of elongation seen in GYRO simulations
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Linear ExB shear quench rule has been implemented in
TGLF and shows good agreement with GYRO simulations

• TGLF compared to GYRO ExB shear
scans for STD case with Miller
geometry, different values of κ,
δ=0, low-k only, kinetic electrons

• ExB shear rate with multiplier αE is
subtracted from maximum growth
rate at each kθρs

Here,

gives a good fit to GYRO ExB shear
simulations with Miller geometry.
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Validation of the TGLF transport model

against experimental profile database
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A profile database of 96 Discharges from DIII-D, JET, and
TFTR has been assembled for model testing

• The database is comprised of conventional L- and H-mode discharges
– 25 DIII-D L-, 33 DIII-D H-, 22 JET H-, 16 TFTR L-mode discharges

– Most of JET and all of TFTR discharges in ITPA Profile Database

– Most discharges are from parameter scans including ρ*,ν*,β,q,Ti/Te,vφ
– Only considered discharges with toroidal rotation (vφ) data present

– 96 shot database supplemented with DIII-D hybrid database (27 shots)

• Simulation methodology
– TGLF and GLF23 run in the XPTOR transport code and treated equally with

same solver and data
– Predict core Te and Ti profiles for a single time-slice taking densities, toroidal

rotation profiles, equilibrium, sources, sinks from experimental analyses
– Boundary conditions enforced at ρ=0.84 for L-, H-modes

– First TGLF runs are electrostatic with hydrogenic ions only
– Chang-Hinton neoclassical, neoclassical poloidal rotation for ExB shear
– TGLF simulations performed on local Linux cluster usually with 40 processors

CPU time ≈ 10 mins for 40 grid pts, 40 processors
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Validation metrics for testing against experimental data

• Quantitative agreement measured by global and local figures of merit

Avg. and RMS in the incremental stored energy Winc for ith discharge

RMS and offset for temperature T profile at each jth radial pt for ith discharge
(same definition as used for benchmarking fluxes and growth rates)

Avg RMS and offset for each dataset
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TGLF exhibits lower average global errors than GLF23 for a
large L- and H-mode profile database of 96 discharges
• Database: 25 DIII-D L-,33 DIII-D H-, 22 JET H-, 16 TFTR L-mode discharges

– Supplemental DIII-D hybrid database = 27 discharges

• Avg RMS errors in Winc is 19% for TGLF, 36% for GLF23

• Offset in Winc much smaller for TGLF (2% vs 16%)
• Avg RMS error in Wtot is ΔRWtot=10% for TGLF, 20% for GLF23
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Local errors show TGLF model has fairly uniform
agreement across DIII-D, JET, and TFTR discharges
• Avg RMS error for [Ti,Te] = [15%,16%]

– RMS errors in profiles computed outside q=1 to avoid influence by sawteeth

• TGLF Avg RMS error for Te smallest for H-modes, largest for DIII-D & TFTR L-modes

• TGLF has a small offset for DIII-D L- and H-modes and JET H-modes, but
systematically overpredicts Ti,Te for DIII-D and TFTR L-modes
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TGLF model has lower overall RMS errors and offsets in the
temperature profiles than the GLF23 model

• TGLF has avg RMS error for [Ti,Te] of [15%,16%], GLF23 has [31%,23%]
– Comparable RMS errors for DIII-D L-, H-modes, and hybrids, but TGLF has

noticably lower errors for JET and TFTR

• TGLF has a smaller offsets JET and TFTR than GLF23

• TGLF has larger negative Ti offsets but smaller Te offsets for DIII-D
H-modes & hybrids
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Sensitivity studies
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Sensitivity to Boundary Conditions: TGLF simulations show
L-mode profiles less sensitive to boundary temperatures
than H-mode profiles for DIII-D

• A measure of the sensitivity to the boundary temperature (“stiffness”) is the
ratio of the change in central temperature to the change in boundary
temperature, ΔTio/ΔTBC

• The edge boundary temperatures were varied around the exp. values by
+- 30% for a DIII-D H-mode and +-50% for a DIII-D L-mode

H-mode: ΔTio/ΔTBC=0.20/0.30=0.67         L-mode:  ΔTio/ΔTBC=0.07/0.50=0.14
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Sensitivity to Geometry: Miller geometry improves the
agreement of TGLF with experimental profiles

• Miller geometry yields very little improvement for shaped tokamaks (DIII-D, JET)
but yields surprisingly noticeable improvement for TFTR which is circular

– Finite aspect ratio in Miller geometry increases transport in TFTR compared to
s-α but is compensated by elongation in shaped tokamaks (DIII-D, JET)
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Transport is significantly higher for STD case going
from s-α geometry to Miller geometry with κ=1.0

• GYRO simulations varying r/a for STD case show larger χ’s with Miller finite aspect
ratio geometry compared to infinite aspect ratio s-α geometry

– Elongation shear (and elongation) stabilization compensates for this in DIII-D
– GYRO κ=1.5 results for χi close to s-α result, χe still higher than s-α

– Assumed sκ=(κ-1)/κ for elongation shear
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Elongation shear is more stabilizing than just the local κ

• Miller shaped finite aspect ratio equilibrium model depends on both κ and sκ

where κo is the central κ value

κ only, no elongation shear 
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Sensitivity to ExB Shear: TGLF with ExB shear quench rule
reproduces the observed change in transport in a DIII-D
hybrid rotation scan
• Toroidal rotation varied by 3x, beam power changed to keep β fixed 

(Politzer APS07 talk)

• TGLF shows ExB shear more important in high rotation case

• ExB shear has much less impact on Te for hybrids because the electron
transport is dominated by high-k modes
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Low rotation High rotation
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• Toroidal rotation varied by 3x, beam power changed to keep β fixed 
(Politzer APS07 talk)

• TGLF shows ExB shear more important in high rotation case

• ExB shear has much less impact on Te for hybrids because the electron
transport is dominated by high-k modes

Sensitivity to ExB Shear: TGLF with ExB shear quench rule
reproduces the observed change in transport in a DIII-D
hybrid rotation scan
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Low rotation High rotation

• Toroidal rotation varied by 2x in hybrid pair w/ q95=3.1
– q95=5.0 for discharge pair on prev ious slide

• Like high q95 pair, ExB shear more important in high rotation case

• Modeling of 10 low and high q95 shots shows TGLF tends to underpredict the
profiles for high q95 and overpredict the profiles for low q95

Sensitivity to ExB Shear: TGLF results also show that ExB
shear is less important in low q95 hybrid discharges
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• TGLF modeling of DIII-D discharges using experimental radial electric field data
yields approximately the same predicted temperatures as those obtained
computing ExB shear with neoclassical poloidal velocity

• 15 L- and H-mode discharges modeled w/ Er data

• More noticable differences may appear in ITBs and H-mode pedestal regions

Sensitivity to ExB Shear: DIII-D disharges have been
modeled with TGLF using Er Data to compute the ExB shear
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Sensitivity to High-k Modes: TGLF predicts high-k modes
can dominate the electron transport in the plasma core

• ETG coefficient in saturation rule determined by fitting GYRO simulation of GA STD
case where χe,high-k / χe,total = 11% (ky > 1, µ=30)

• TGLF has lower low-k contribution to χe than GLF23

• Suppression of ITG/TEM transport by ExB shear results in high values of χe,high-k / χe
as χi approaches neoclassical

– Low q95 hybrids have largest χe,high-k / χe , L-modes have lowest χe,high-k / χe
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Sensitivity to Density Evolution: TGLF reproduces peaked
density profiles and has low RMS errors for database
• Density evolved along w/ Te, Ti with

feedback on wall source to match line
avg. density using the impurity, fast ion
densities from exp. analyses
– Avg. σne = 12% for 96 discharge

database

• RMS error in [Ti,Te] virtually unchanged
from  [15%,16%]

9 %, +3.4%TFTR L-

16 %, +8.3%JET H-

12 %, +8.0%DIII-D H-

8 %, +1.2%DIII-D L-

Avg. σne, fne for q>1
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Sensitivity to Finite Beta: Finite β found to be mildly
stabilizing in the plasma core of discharges in database

• For STD case, energy fluxes decrease with β, then increase above ideal limit

– Magnetic flutter contribution not agreeing with GYRO, further work needed

• RMS in Ti for hybrids decreases from 15% to 12% with finite β, smaller change in
rms errors for DIII-D H-mode database
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TGLF Typically Underestimates Transport In Near Edge
Simulations of DIII-D L-mode Discharges

• Boundary conditions have been extended to ρ=0.96 with Te, Ti predicted

– Nearly a dozen DIII-D L-mode discharges modeled

– Predicting the density also for #101391 did not alter the temp. profile predictions

• More TGLF and GYRO comparisons needed for L-mode edge conditions
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TGLF shows good agreement with GYRO Miller
geometry low-k simulations for large values of r/a

• R/a held fixed along with other local quantities, essentially a scan in trapped
fraction, r/R

– r/R = (r/a) / 3 since R/a=3.0

• Where is the missing transport coming from ?
– TGLF agrees w/ GYRO for STD case parameters, but s > 2 typical at ρ>0.75 for DIII-D
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TGLF overpredicts central Te profile in DIII-D discharges
with density peaking

• High q95 hybrid cases show more density
peaking than low 95 cases in this group of
DIII-D shots

• ETG threshold is sensitive to a/Lne
– Peaking decreases transport

High q95
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Insufficient Particle Transport Close To Magnetic Axis
in DIII-D Hybrid Discharges With Low ITG/TEM Transport

• Neoclassical particle transport taken to be equal to χe neoclassical

– Dneo enhanced to 20 χe neoclassical when q<1

• Central density profiles overpredicted in DIII-D hybrid discharges with strong
ExB shear stabilization
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Summary

• Quasilinear saturation rule in TGLF shows remarkable agreement with
large GYRO transport database of 83 simulations with Miller geometry !

• An ExB shear quench rule has been implemented in TGLF that fits GYRO
nonlinear simulations at various elongations

– Quench rule well validated by rotation scans in DIII-D hybrid database, ExB shear more
important in high rotation cases and high q95 cases

• Better fit to theory (GYRO) resulted in better predictions of exp. data
– Comparison between the TGLF and GLF23 models for a database of 96

discharges from DIII-D, JET, and TFTR shows that TGLF exhibits 19% [2%] RMS
[offset] error in Winc versus 36% [16%] for GLF23

– Over 500 transport runs !

• Average RMS errors in [Ti,Te] are [15%,16%] for TGLF, [31%,23%] for GLF23

• TGLF predicts the high-k/ETG modes dominate the electron energy
transport when the ion energy transport approaches neoclassical

– ETG dominant contributor to χe in DIII-D hybrid discharges
– High-k modes predicted to be important in the deep core of L- and H-modes

• TGLF accurately predicts density profile shapes with an average RMS
error of 12% for 96 discharge database
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Where do we go from here?

• Modeling/Theory
– Include parallel velocity shear in TGLF equations, predict momentum transport including

ITB discharges and intrinsic rotation cases
– Study kinetic impurity effects in TGLF (see Staebler’s poster)
– More GYRO and TGLF studies needed

• L-mode near edge conditions (e.g. high magnetic shear, high collisionality)
• More ETG simulations for various conditions using Miller geometry

– Extend modeling toward edge region
• Move from Miller equilibrium model to actual equilibria (e.g EFITs)

– Why are H-modes systematically overpredicted and L-modes underpredicted ?

– Deep core ETG transport sensitive to core density profile (e.g. DIII-D hybrids)

– Rescale CX and ionization flows as wall neutral source is rescaled
– Test model with high beta and for low aspect ratio (NSTX and MAST)
– Model perturbative experiments (e.g modulated ECH)
– Improve sawtooth model in transport code
– More accurate neoclassical particle transport needed (i.e. near axis)

– Replace ExB shear rule with rotational ballooning mode net linear growth rate model; χ
vs γE curve changes shape with aspect ratio

– Include nonlocal effects, small effect of turbulent exchange

– Revisit ITER projections



J. Kinsey - TTF08

Where do we go from here?

• Experimental analyses
– In general, we need the highest standard of data analysis
– C-mod data
– Kinetic EFITs
– Accurate fits to raw data near edge
– Improve assessment of error bars
– Scrutinize sources (particle, energy)
– Examine effects of atomic physics
– Other possible data issues:

• MHD activity
• time derivative terms
• fast ion losses
• beam deposition
• dilution
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Backup slides
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Agreement can also be quantified using raw
experimental data points and computing a reduced χ2

• RMS errors and offsets we have used compare the model predictions with fitted
experimental profiles

– Doesn’t take into consideration scatter in raw data as well as the error bars in the data

– Doesn’t distinguish between older and newer (often less scatter, smaller error bars) data

• Reduced χ2 values used to quantify fits to raw data

where σbar=raw data error bar for jth radial pt

• Reduced χ2 varies depending on size of error bars
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TGLF reproduces observed change in confinement as
the toroidal rotation varies in a TFTR torque scan

• Toroidal velocity varied by changing mix of co- and ctr- NBI

• Less NBI power needed in high rotation cases to achieve same stored energy as
low rotation cases at same density
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Linear GKS Database for TGLF Testing

STD case: R/a=3.0, r/a=0.5, q=2.0, s=1.0, α=0, a/LT=3.0, a/Ln=1.0, T i/Te=1.0, ν=0, β=0
TEM1 Case: STD w/ a/Ln=2, a/LT=2    TEM2 Case: STD w/ a/Ln=3, a/LT=1
PED case: R/a=3.0, r/a=0.75, q=4.0, s=3.0, α=5, a/LT=10.0, a/Ln=3.0, Ti/Te=1.0, ν=0, β=0

32

32

55

55

32

64

80

80

64

64

55

55

80

# pts

STD2

STD2

STD2

STD2

STD2

STD2

STD2

STD

STD

STD

STD

STD

STD

Set

ky  scan (2.0→ 24.0) @ q=2,4 w/ a/LT=613

ky  scan (0.10→ 2.0) @ q=2,4 w/ a/LT=612

shear scan (-1→ 2) @ various q (1–5), ky=0.4511

shear scan (-1→ 2) @ various q (1–5), ky=0.1510

shear scan (-3→ 3) @ q=2,49

shear scan (-1→ 2) @ q=1.2,1.4,1.68

ky  scan (0.75→ 3.0) @ various q (1–5)7

a/LT scan (0 → 3) @ various a/Ln(1 → 2)6

ky  scan (0.01→ 0.70) @ various Ti/Te (0.5 → 2.0)5

ky  scan (0.01→ 0.70) @ various a/LT (2 → 5)4

shear scan (-1→ 2) @ various q (1–5), α=13

shear scan (-1→ 2) @ various q (1–5)2

ky  scan (0.01→ 0.70) @ various q (1–5)1

Scan typeScan

* STD = 398 GKS runs, STD2 = 310 GKS runs
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Linear GKS Database for NCS, PED Cases

80shear scan (1→7) @ various q (3→7), α=9PED26

80shear scan (1→7) @ various q (3→7), α=12PED27

64ky  scan (0.01→0.70) @ various a/LT (7→12), α=0PED28
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Set

ky  scan (0.01→0.70) @ various Ti/Te (0.5→2.0)29

shear scan (1→7) @ various q (3→7), α=625

shear scan (1→7) @ various q (3→7), α=324

shear scan (1→7) @ various q (3→7), α=023

ky  scan (0.01→0.70) @ various q (3→7)22

ky  scan (0.01→0.70) @ various Ti/Te (0.5→2.0)21

ky  scan (0.01→0.70) @ various a/LT (2→5)20

shear scan (-1→2) @ various q(1→5), α=419

shear scan (-1→2) @ various q(1→5), α=318

shear scan (-1→2) @ various q(1→5), α=217

shear scan (-1→2) @ various q(1→5), α=116

shear scan (-1→2) @ various q(1→5)15

ky  scan (0.01→0.70) @ various q (1→5)14

Scan typeScan

* NCS = 483 GKS runs, PED = 608 GKS runs
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Transport Database for TGLF Testing

STD case: R/a=3.0, r/a=0.5, q=2.0, s=1.0, α=0, a/LT=3.0, a/Ln=1.0, T i/Te=1.0, ν=0, β=0
TEM1 Case: STD w/ a/Ln=2, a/LT=2    TEM2 Case: STD w/ a/Ln=3, a/LT=1
PED case: R/a=3.0, r/a=0.75, q=4.0, s=3.0, α=5, a/LT=10.0, a/Ln=3.0, Ti/Te=1.0, ν=0, β=0

 5Aspect ratio (R/a) scan w/ κ=1.0 (A=1.2–4.0)STD23
 4Triangularity  scan w/ Miller geometry , κ=1.0 (δ=0.0–0.75)STD22

 4Magnetic shear scan @ q=2TEM110

 7Elongation scan scan w / Miller geometry , κ=1.0 (κ=1.0–2.5)STD21
 5ExB shear scan (γ E=0.0 – 0.4, γ p=0)STD20
 8Collisionality  scan (νei=0.0 – 0.5)STD19
 8Magnetic shear scan @ q=2TEM218
 7Magnetic shear scan @ q=2TEM117
 6Safety  factor scan @ s=1.0TEM216
20Safety  factor scan @ s=-0.5, 1.0, 1.5STD15
 4a/LT scanPED14
 5
 6
 7
 6

 6
 7
 5
 4
27
 7
 7
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20
# pts

PED
STD
STD

TEM2

TEM1
STD
STD
STD
STD
STD
STD
STD
STD
Set

Magnetic shear scan (s=1.0, 1.5, 2.0, 2.5, 3.0)13
a/LT scan @ r/a=0.7512
a/Ln scan @ a/LT=2.0, 3.011
Safety  factor scan (q=1.1, 1.5, 2.0, 2.5, 3.0, 4.0)10

Safety  factor scan (q=1.1, 1.25, 2.0, 2.5, 3.0, 4.0)9
R/a scan (1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0)8
r/a scan (0.10, 0.25, 0.50, 0.75, 1.0)7
Ti / Te scan (0.5, 1.0, 1.5, 2.0)6
a/LT scan @ a/Ln=0.5, 1.0, 1.55
Safety  factor scan @ s=1.04
Magnetic shear scan @ q=1.253
Magnetic shear scan @ a/Ln=0.5, 1.52
Magnetic shear scan @ MHD alpha=0, 1, 21
Scan typeScan

Database
used in 
fitting
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Experimental Data and Theory Issues Need Addressing in
Order to Move Transport Simulations beyond ρ=0.84

• RMS errors increase noticably for DIII-D and TFTR L-modes when ρBC

changed from 0.84 to 0.90

• Experimental analysis issues

– Sharp changes in q-profiles near edge, non monotonic magnetic shear

– More accurate equilibrium (e.g. EFITs) needed

– Better Zeff measurements which impacts ion density profile

– Toroidal rotation profile, held fixed in these simulations

• Theory/modeling issues
– ExB shear quench rule needs further examination (GYRO shows elongation

dependence)

– More ETG simulations needed for near edge conditions

– Low a/Lt, TEM regime needs further study

– More comparisons between TGLF and GYRO for edge conditions


