

Electron gyro-scale fluctuations in NSTX plasmas

David R. Smith Princeton Plasma Physics Lab

In collaboration with: E. Mazzucato, R.E. Bell, J.C. Hosea, S.M. Kaye and B.P. LeBlanc *Princeton Plasma Physics Lab* W. Lee and H.K. Park *POSTECH* C.W. Domier and N.C. Luhmann, Jr. *University of California at Davis* F.M. Levinton and H. Yuh *Nova Photonics*

21st US Transport Task Force Workshop Boulder, CO March 25-28, 2008

Key points

- Prominent electron gyro-scale fluctuations are observed at many locations in NSTX plasmas
- Measurements and calculations support the conjecture that ETG turbulence exists in NSTX plasmas
- ExB flow shear suppression explains the saturation dynamics for some measurements

NSTX plasmas are well-suited for investigating ETG turbulence & electron thermal transport

In NSTX H-mode plasmas, electron thermal transport is dominant; ion thermal transport is at or near neoclassical

Evidence suggests ExB flow shear reduces or stabilizes ITG/TEM turbulence

See papers by Kaye (07, 06), Levinton (07), Stutman (06), and LeBlanc (04)

Collective scattering provides spatial and k-space localization for fluctuation measurements ONSTX = measured \vec{k} fluctuation Multiple detection channels can probe the fluctuation k-spectrum $n_{e}(\vec{k_{4}}, t)$ $n_{e}(\vec{k_{3}}, t)$ k-matching: $\vec{k} = \vec{k} + \vec{k}$ θ Bragg condition: $k = 2k_i \sin(\theta_s/2)$ $\mathbf{P}_{e}(\vec{k_{2}}, t)$ $\mathbf{P}_{e}(\vec{k_{1}}, t)$ k-space resolution: $\Delta k = 2/a$ 2a n(x, t)The angular distribution of scattered light reveals the fluctuation k-spectrum

NSTX "high-k" scattering system measures fluctuations up to $k_{\perp}\rho_{e} \cong 0.6$

- 280 GHz microwave scattering system
- Five detection channels
 - k_{\perp} spectrum at five discrete k_{\perp}
 - $-\omega$ spectrum from time-domain sampling
- Tangential scattering
 - Probe and receiving beams nearly on equatorial midplane
 - System sensitive to radial fluctuations
- Steerable optics
 - Scattering volume can be positioned throughout the outer half-plasma
- First data during FY06 run campaign; upgrade late in FY07 run campaign

Steerable optics enable good radial coverage

Intermediate $\rho = 0.4$

ONSTX =

Outboard $\rho = 0.75$ $k_{\perp}\rho_{e}$ up to 0.2

-2.0

-1.5

-1.0

X (m)

-0.5

0.0

Inboard ρ = 0.05 k_⊥ρ_e up to 0.6

ю

Scattering system layout

- BWO source
 - ~100 mW at 280 GHz

NSTX =

- Overmoded, corrugated waveguide
 - low-loss transmission
- Probe & receiving beams
 - quasi-optically coupled with6 cm dia. waist
- Heterodyne receiver
 - five channels
 - two mixing stages
 - quadrature detection with 7.5 MHz bandwidth
 - reference signal from BWO

Scattering system pictures

waveguide and launch optics

collection optics

NSTX =

heterodyne receiver (5 ch + ref ch)

collection mirror

five exit windows

Example measurement parameters

k-vectors should satisfy $k_{_{||}} \ll k_{_{\perp}}$

Ray tracing calculations

	Ch. 2	Ch. 3	Ch. 4	Ch. 5
r/a	0.27	0.28	0.29	0.30
d _{min} (cm)	0.1	0.1	0.1	0.1
k _∥ (cm⁻¹)	0.1	0.0	0.2	0.0
k _r (cm⁻¹)	6.9	11.0	14.6	17.8
k _θ (cm⁻¹)	-1.6	-3.4	-4.4	-5.5
k _⊥ (cm ⁻¹)	7.1	11.5	15.2	18.6
k _θ /k _r	0.23	0.30	0.30	0.31
$k_{\perp}\rho_{e}$	0.23	0.38	0.51	0.62
$k_{\perp}\rho_s$	14	22	30	37
k _⊤ (cm ⁻¹)	-0.4	-0.7	-1.2	-1.3
f _D (MHz)	-1.0	-1.8	-3.0	-3.3

Alignment

NSTX =

Electron drift direction

Doppler shift in ion direction

Measurements show enhanced fluctuations propagating in the electron drift direction

High-k measurements at R \simeq 120 cm and r/a \simeq 0.3

With strong rotation from NBI, fluctuations Doppler shift to the ion direction

High-k measurements at R \simeq 135 cm and r/a \simeq 0.6 with k $\rho_e \sim 0.1-0.2$

Fluctuations initially appear in the **electron drift direction**, then Doppler-shift to the **ion drift direction** due to NBI.

Prominent, persistent fluctuations observed in core

High-k measurements at R \simeq 113 cm and r/a \simeq 0.2 $k_{\mu}\rho_{e} \sim 0.35-0.40$ for channel 5 124887 - Ch. 5 124885 - Ch. 5 124886 - Ch. 5 -20 Frequency (MHz) ⁻requency (MHz) requency (MHz) -22 2 2 Power (dB) -24 -26 0 0 0 -28 -2 -2 -30 -32 0.30 0.50 0.60 0.30 0.40 0.50 0.60 0.30 0.40 0.50 0.60 0.40 Time (s) Time (s) Time (s) 124885 - Ch. 5 124887 - Ch. 5 124886 - Ch. 5 -20 -22 -20 -22 -20 -22 425.0 ms 500.9 ms 425.0 ms ion Power (dB) Power (dB) Power (dB) -24 -26 dir. -24 -24 ele. -26 -26 dir. -28 -28 -28 -30 -30 -30 -32 -32 -32 -2 -2 2 -2 0 0 2 0 2 Frequency (MHz) Frequency (MHz) Frequency (MHz)

Features appear in the ion direction due to Doppler shift

NSTX = -

Prominent, persistent fluctuations observed in outer-plasma

Ion/electron directions are reversed from previous slide. Fluctuations again experience a Doppler-shift to ion direction.

Why do fluctuations rise & fall?

High-k measurements at R \simeq 135 cm and r/a \simeq 0.6

Fluctuations rise & fall with ExB shear

NSTX =

Fluctuations also respond to a/L_{Te}

Measurements at r/a \approx 0.2 and k₁ $\rho_e \sim$ 0.35-0.40

Summary

- Prominent electron gyro-scale fluctuations are observed at many locations in NSTX plasmas
- Measurements and calculations support the conjecture that ETG turbulence exists in NSTX plasmas
- ExB flow shear suppression explains the saturation dynamics for some measurements