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MOTIVATION AND GOAL I

e Main motivation is to explore the predictions of the self-consistent action-
angle transport theory on axisymmetric transport

Motivations

— We do this by addressing two concrete issues in electron transport not yet
fully understood: (1) peaked density profile with no central sources
(pinches); (2) current density transport

Goals

e Sct up a procedure which goes from the initial collision operator in action-
space to an explicit set of transport equations which could be tested against
experimental data

e Study electron transport in magnetic turbulence keeping the “drive” from
the safety factor gradient together with the more conventional thermody-
namic drives



ACTION-ANGLE APPROACH
TO AXISYMMETRIC
TRANSPORT

Use of actions and normal modes

Colliston operators in action-space have been introduced to obtain a
very general and at the same time formally simple description of transport
phenomena in complex geometries due to electromagnetic spectra.

This has been achieved by:

(1) using action-angle variables to describe particle motion, so to automatically
include orbit and mode complexities pertinent to inhomogeneous geometries

(2) expressing the fields as an expansion over plasma normal modes, so to
permit a formal solution of Maxwell’s equations



Actions

Canonical transformation from (x,p) to (J,0) where the actions J; =
¢ dx; p; are constant of the unperturbed motion, and @ are cyclic:

H(J,0:t) = HyJ:t) + h(3,0:t) + - --

e Unperturbed motion (assumed integrable) and perturbed motion
Jo=—0H,/00© =0 0J = —0h/0®
Hy(J;t : :
ol 8) = {@z@HO/E?JEQ(J;t) 00 = 0h/0J ~ (
e Magnetized plasma slab: B = B(z)z = 0, 4,(z)z:
J — (Jg: by, p:) O — (6,7, 2)
where (X, Y )= G.C. coordinates, and

h(J,@;t):>{

Mec ,
J, = — o gyro — action
€
e €
py, = Mv,+-A,(xr) =-A,(X) canonical y — momentum
c c

Pz — Mvz



o Axisymmetric toroidal geometry:

Flux coordinates: £ = (a, 6, () where « is the toroidal flux function o = ¢y =
W, /(2m); 6 is the poloidal angle, ( is the toroidal angle.

Convenient actions are [Ref: A.N. Kaufman, (1972)]:

M?c ,
J, = po——  gyroaction

e e
Jo = Muve+ —A¢(r) = -Ac(ry) canonical toroidal angular momentum
c c

do
Jy = 7{ —go?(ﬁ; Hy, J,, J;) toroidal flux inside drift orbit

2T C

where & is the projection on the poloidal cross-section of the guiding center
trajectory



o Two J’s are v-like (v, ,v)), and one is r-like (ry)
For untrapped particles:
— Jy 1s v -like
— J¢ is v)-like (particle transit speed)
— Jy & (e/c)Wy(rp) is r-like (magnetic surface on which particle moves)

e The first order Ham:iltonian is expanded in a Fourier series in the ignorable
and periodic coordinates ©:

h=1[q®1 — (¢/c)v - Ai] = > h(L, I;t)exp(+il - ©)
;

— The triplet of integers € = ({,, (, {) singles out each one of the harmonics
of the particle perturbing Hamiltonian, i.e., of the orbital motion. In the
general case £ # k (coincidence in zero-gyroradius, driftless limit).



Normal modes

e In the gauge ® = 0, the two “V X “ Maxwell equations can be cast in the form
(Ref: Kaufman, 1972)

A(x,w)-Ai(x,w) = — (2) : %jext(x, W)

W

e The inversion is achieved by Green’s function method (G = A1)
247
A(x) = — (;) ) /dx G(x, X) Jeoxt (X))
where A(x,w)-G(x,x",w) = Id(x — x')
e This has been solved in 3-D (Ref: Mynick, 1988) by representing E; =

(tw/c)A1(x,w) in terms of the basis set E,(x) of normal modes (i.e., jext = 0),
so that G and A are brought into 'diagonal form’, making the inversion of A

simple

, E,x)E,(x
G(x,x,w) :Z ]\Sg (ci) )

where G, (w ) = A} (w) are the eigenvalues of the eigenvalue problem for Maxwell

operator: G-E,(x) = G,(w)E,(x)

a



QUASI-LINEAR AND
SELF-CONSISTENT COLLISION
OPERATOR

(Quasi-linear collision operator

Evolution of the 0™ order part of @-averaged distribution function [(Ref: Kauf-
man, 1972)]:
0f(J; 1) 0 0 0f(J;1)
—_— — —— _ — Dq ° . .
ot gy (010010 = G5 - DI 55

The diffusion tensor is

D(J) — /OOO dr (J[I(t),0(t),t] JI(t —7),0(t —7),t — 7))o

= >0 26 (02 — w)|CL (8, Trw)
e a

where the “coupling coefficient” C4(£,J,w,) = ho(£,J,w,) describes the energy
exchange between a perturbing wave and the unperturbed particle
motion



Self-consistent (or generalized Balescu-Lenard) collision
operator

Evolution of the 0'" order part of @-averaged distribution function (Ref: Mynick,
1988):

of(Jut) 0 Of(J1;1)

= — |D(Jy) - —F(Jy)f(Jq;t

ot (7J1 < 1) (7J1 ( 1)f< 1, >

where D(J; ) is the usual (ensemble averaged) diffusion tensor, and

F(J, 1) = (J™J(¢), 0(t),1])e

is the friction vector which considers the polarization field induced by the test
particle = back-reaction of particle on fields



Diffusion and drag coefficients
The coeflicients D and F' have been evaluated by Mynick, 1988 and Hitch-
cock, Hazeltine, Mahajan, 1983:

D(J;) = Z € & Do(Jy, 61, 62) ,  F(Jy) = Z € 6 -Fo(J1, 41, £)
£,.¢, .6,

3
Dy(J1; €1, £5) = Z (%) /dJ2 Q1,d1;£2,J2) f(J2)

2

27\ ? df(J2)
Fo(Ji;41,£5) = - dJ b, J1: 65, :
i) =3 (57) [ e 25

Q(El,Jl,EQ,JQ) = 21 (5(21 . Ql — w) Z |Ca(£1,J1,£2,J2,w)|2
a w:£2-§22
4 ha(ﬁl,.]l,w) hZ(ﬁQ,Jg,W)
N,Aq(w) '

“, 9
a

Co(l1,J1,£2,J2,w)

Here, A,(w) is the eigenvalue of mode of the Maxwell operator
(generalization to inhomogeneous, electromagnetically interacting plasmas of the
dielectric function), and N, = a normalization factor.



TRANSPORT EQUATIONS I

e Let x(x,Vv;t) be some quantity of interest, whose mean w.r.t. the distribution
function is

Wt = [dvxxvit) fixvit)
and its flux surface average is

1 ~ .
V/(7) / dx olax,t) — a] X(x;t) .

with @ (or 7) the flux surface of interest.

(X)ala,t) =

Taking the time derivative and passing to action-angle variables

J ?&:w(ri Mgffdjd@@% {(x(J,0,1) §[a(J,©,t) —a] f(J,0,1)}

7

~
obtain 3 terms



e Assume as equilibrium distribution a drifting Maxwellian

F) = farl) {1 o] P[a(Jﬂ}

Tlo(J)]
where V| is the parallel drift (low) speed, P = M, and
o 3/2
Fuld) = =5 g o () = abila(D))/Tla()

e Radial transport law for y

time egglution Ware—Ggl\eev pinch
é —\ i o flux source
Jd _ ox1 1 0 -, Oa(t) 1 0, =~ —=
—_— . — —_— = —-——_———— —_——_—— F p—
ot il <at > Voa” <X1 o | vaay o=t

Note: Both D and F contribute to flur and source.



e [lux and source:

] S S S St () (55

2 2122 k
flux or source
spectrum - XX(J ’; , ) drives
0T 67D [y e | ) ) AT 160
where:
XX [ dO® [\(J.©.1) L 9(],0,1) )
[YX] :/(2@3 [ - 95x(J,0,1) ol ©.1)

coupling coeff.

Q(£1,31,£5,J5) oc §(81 - Qy — £y - Qy) Co (£, J1: 45, T5)




e The driving term is:

A(Jla J27£17£2)

1+V|1P1 Vu,zpz 6 £
15 Ty T
V| 2P Via Vi Vil
(et ) (1) g,
V P Vi o P
(1 + 1) ( + H; - (g1 Av1— g2 An2)
>

Vi P V P Vi o P ViiP
B [ 1.1 1( 1.2 2) o Avy — 1.2 2(1+ 1.1 1) 0 Am]

1 2 T2 T1
V| 1 P Vuzpz Ko Koo
— {1+ : — — gy —= :
) ( + T g1 T, AT1 g2 T ATQ
M2
g=£-V ya(J), G =LV g {Mua(d)]}, Ky = Hy — qg = TR

Ay = N'/N + (¢/T)®, - (3/2)T')T ,  Ar=T/T, Ay=V//Vj-T/T.

— Because of (5(21 . Ql — 22 . ﬂz), £1 : Ql/Tl — EQ : QQ/TQ — 0 when T1 = TQ.
— The drive proportional to G is zero when V), Vg = 0



SELF-CONSISTENT
TRANSPORT IN MAGNETIC
TURBULENCE

Evaluation coupling coefficient

e For passing particles in magnetic turbulence, the perturbing Hamiltonian re-
duces to

2
a8, 3;)? == [(a/ eS| O(bc = na) JE (20) T2, (20)

— 2, = k1p, and 2, = [(krq)? + (mbg + nlq)?]V? [where (rq,0q,(q) quantify
the particle excursion from the field lines in the course of a transit period]

— Ju(24), Jo(2p): represent the strength of that portion of mode “a” that is
oscillatory at expli(€,0, + €;,0y)] (i.e., range of £, and ¢, over which a mode
contributes)

— (0 — ngy): gives that portion (namely, all or none) of the mode that is oscil-
latory at exp(il,0).



e The spectrum in the collision operator is thermal, i.e., driven solely by uncor-
related shielded test particles (as in the standard BL operator)

To approximate realistic turbulence, we replace it with a supra-thermal spec-
trum, the pseudo-thermal ansatz of Mynick and Duvall, PoF 1989:

(i) Assume that the “generalized dielectric function” A, is nonlinearly modified
so that (Aky ~ pt Ak~ L1 Ak > Aky)
2
T
FYIERETINE

A'(r,w,) — A x B%(2) exp[—2

(ii) Replace the spectrum driven by species 2:

Ca 9
4 ha(fl Jq W) h*<£2 Jo w) : / ‘Q1A|C|L| UU9 |2
a3, £(J 1, ) Ratta, 72, 43, f(3 ‘ ‘
f =500 NoB o) = L I N

Important point: the pseudo-thermal spectrum retains the structure of the
original thermal spectrum = it maintains the required properties of the
collision operator




Procedure to evaluate fluxes and sources (I)

Procedure consists of three main steps:

step 1 step - step 3

B ZYY/ i, fur
(Ql—na) (fgz—na) 5(041—04)

flux or source
A

spectrum ~ XX(J 7 _) ~ drive
Ve A N 17 1705 Ve -\ N\
Q(ELJLEQ?JQ) [YX(JLELOO ] A(J17J27£17£2> y

where

Q 0.6 5(21 . Ql — 22 . Qg) ‘AH‘Q |UH71|2|UH72‘2
A o< £;-2;(35),9;(J5),G;(J;)  j=1,2



Procedure to evaluate fluxes and sources (II)

Step (1): £ sums
The sums over £, are eliminated by setting £, = 0 (no gyro-resonances).
The sums over EC are performed using d(f; — n,) (axisymmetry).

The sums over £, are converted into integrations (due to resonance broadening
effects), and using 0 (€182 + 16201 — Lpol22 — nafc2) in the £ sum. For example:

d(£1-€0) 5(£1-821 — £o-82,) bt 6k —>(£2.92)i Ly
/ ( ) (7

i T Ty \T;
Before proceeding, need expressions of various factors in the far-untrapped limit. For
example:
- M5 Dgsar 09y
05 == Wiy + kyujs — nec | — =ty — Qea—
2°8 &2 b2 1Y)12 a 7 Oag |2 — Ysaf Dy
- uh

X{CH_)—OS M1UH1 a1 (5(0&—07) , }GXH_)—OS 1 G1 (5(0&-07)
4e U




Step (2): J integrations
For untrapped particles we approximate

MJZRO +00 +00
/ dJ] ~ BO /dOé] /_OO Cl’l]”7 /‘]\IU2 /QdKO] .

¥

The day integration is performed using §(a; — &), while the day integration is
performed approximating the equilibrium quantities as constants inside V,. The
remaining integrations are trivial.

Step (3): k sums
These sums are converted into integrations,

Va © 9] ©.@)
Yy = GhsE /0 dky k; /_ dk

k 0.@)

and performed in the approximation kj < k| (magnetic turbulence).



Fluxes

Keeping only terms of O(1) in € = pe A ~ 1073, where Ax, Ay, At or Agr =
(dqsat/dr) / gsae, We obtain for the electron particle flux:

T.
e
€ (T

€

— 1) Asat — Lei (L;Vi + Ly + Ly + Lil)
where

Uth,1 Ut2h,2 P2(9 J8<Zg,1>Jg<Zg,2>

£12 = ZPQWNlb?DRRGa 2) With lA)RR(l, 2) = Uth,l

Ta

O (lvgel?) T2, M

- For <17 2) - (67 Z)a USng Uth,e/Qb,M:e - QSafRO and <|/UHZ‘2> — Ut2h,i:

lA)RR(ea Z) X Uth,erafROZ;?ﬂ(i>

i.e., a generalized Rechester-Rosenbluth coefficient



e Electron-electron particle flux is zero, and no dependence on P

e Compare with conventional expression I'Y = —DY/(dN,/dr) — DY (dT,./dr) +

VNN,
D% = L.;/N, diffusion coeft. ,D]TV = L.;/T. thermo — diffusion coeft.
'Cei Tz . .
Vy = N [L N, +Lp —3 (F — 1) AQsaf] pinch velocity

Particle pinch velocity due to ¢/,

Safety factor profiles (left) and corresponding pinch velocity profiles (right), for
typical tokamak profiles with central values T,y = 4.8 keV and Ti g = 1.3 keV, and for b, = 1 x 1074,



Total particle pinch velocity

5.5 y 1 A

51 507 '
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Condition for particle pinch

_ 3Ly | (A = T3/ Te) Ay,
Fpinch = 1+ n

where 17, = Ly, /Ly and we have assumed conventional discharges with Ly, =
—|Ln|, L1, = —|Lz|, ; > 0 and A, > 0
= for T; < T, pinch threshold depends on A, ., T;/T. and i-profiles

> 1,



Keeping only O(1) terms we obtain for the electron momentum and energy fluxes:

[V = —3M.V, {ﬁei (L M+ Ly + L7+ L;j) + (Lo + £ee)L;H1e

I, 3
_ lzﬁa <i — 5) + Eeel Aqsaf}

5 _ _ _ _

1;
e (B0 a)

Compare the energy flux with conventional expression I'!' = —xnT.(dN,/dr) —
xrNe(dT,/dr) — 2TXT, + VpN,T.:
L. 3Lei + Lee e
XN = SF ., XT =25 2]—1\_[ thermal diffusivities
Eei — — Crz . .
Vr = _BW [L N} + LT@'l -3 <T — 1) AQsaf] pinch velocity

The condition for energy pinch is identical to the condition for particle pinch



Sources

Keeping only O(1) terms we obtain for the electron momentum and energy sources:

1; _ _ _

T AkH/AkL ’
el L
' (£ T. ) Asurli, + Lo < Pbype )

T, 1
(rBo)U!l = —3T.A,, [ i (L + Ly +2L7 ) (ﬁei?Jrﬁee) Ly!

1 1
e L (B-)

Assuming a true Maxwellian distribution (no N, T gradients):
(rBo)U! = 15L, A% (T;/T. — 1)

= electron-cooling when T, > T, as it should be (thanks to friction term!)



Ohm’s law

Approximating V|, ~ —7;/(eNN.) in momentum balance, we obtain the general-
1zed Ohm’s law

B M. a<jH>7’ 4 (NeEy),
e2N, Ot N,

where the self-consistent contribution is

, dj 1 d d (7
Eﬁc = NanJ|| T 7x H [’I“ NH—— <_|)]

EH + Eps + 77\I|1€Oj\|

dr Bor dr dr \ By
where the order-of-magnitude expressions for the transport coefficients are
47TB Lee A 1 (1 B LNeé) Lo
NH 0 N. Nx = u)2 LNe pen ) N, ;

47r 1 L%¢ LQB Lo 1d [4m 1 Lpé\ Lee
Nan = — 73 (1 — T3 T e 1= ’
ws L Ly, pep Do p Ne rdr |w:Lp Pep ) Ne

where w? = 4me’N, /M., and € is a nondimensional function of order e.



Transport rates

Compare particle diffusion coefficient DY, (diagonal) thermal diffusivity y7, hyper-

resistivity n”! and anomalous resistivity 7y,

D]]\\; XT UH/Bg ~ 7]an/<€//)e,p)2
Lei/Ne  Lee/Ne <4W/wé>£€€/N€

e Since b%(i)/b*(e) ox v3/vd ., = Lee > Lo, particle diffusion is slower
than heat diffusion.

e Because of the small factor 1/w?, where w? = 4me? N, /M, is the electron plasma
frequency, current diffusion is slower than heat transport, (ny/B)/xT ~
A jw? < 1.

e Analogously, n.n /X1 ~ 47 /w? < 150 that anomalous resistivity remains
small (even though thermal conduction is much enhanced by turbulence):

Ooan/0c =~ 101> 1



SUMMARY AND RESULTS I

e We have considered the action-angle generalization of the Balescu-
Lenard collision operator to study electron transport in magnetic turbu-
lence

e The turbulent calculation required to obtain the magnetic spectrum has been
avoided by using the “pseudo-thermal” spectrum of Mynick & Duvall

e We have derived the complete set of transport equations (particle, momen-
tum, energy and Ohm’s law) for passing electrons

e We have found:

(i) Drives proportional to q./qs are present in all transport fluxes and
sources

(ii) Particle and energy pinches “driven” by ¢./qs depend crucially on T;/T.,
and on n; = Ly. /L,

(iii) (hyper-resistive) current diffusion slower than particle diffusion slower than
heat diffusion

(iv) Anomalous resistivity very small



FUTURE PLANS I

e Carry out similar calculation for trapped particles in electrostatic turbulence
(TEM)

e Improve on the “pseudo-thermal” ansatz. This requires the derivation of a tur-
bulent version of the generalized BL operator. A possible model is Dupree
turbulent version of the BL operator

— The BL includes the collective nature of the plasma dynamics and describes
long-range interactions by the electrostatic field

— In some cases the initial conditions (the ballistic term) in the propagator
of the correlation can affect the relaxation, especially if the initial conditions
deviate greatly from the equilibrium distribution

— The ballistic effect is usually analyzed in terms of clumps, i.e., clusters of
particles moving together and thus forming a macroparticle with a finite life
time (Dupree; Terry, Diamond and Hahm)



©J)
iInhomogeneous
electromagnetic
normal modes
in complex geometry

BL

provisionally: pseudo—-thermal ansatz

OBL " Mynick & bwall, s9) | 9B

action—-angle
(Mynick, '88)

"clumps" assumption

©.J)
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(Ref: Mynick, APS 1989)

(Dupree, '70)
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Physical interpretation of self-consistent spectrum

quasi-linear resonance

shielding by plasma

oint N
Bource point
2 absorber
: 1

° Il Q1

&> <all,> . <lqla> <all,>
a,|2 Na Aa a’l NaAa

/

h(1, a)h(2, a)
NaAa

P

coupling coefficient

(Ref: Mynick, APS 1989)



Parallel with standard Balescu-Lenard operator

ofvit) 0 _DBL(V1> Ofvist) FBL<V1)f(V1;t)]

ot ovy | vy
Of (Jr;t) _ 0 | gBL Of (J1; 1) gBL .
T D775(Jy) - 9, —F97%(J1) f(I1; )

)
) 2
DIPE(Ty) 2\ BL b f(Ja:1)
[FgBL<J1> — Z Z £1 MQ /dJ2 Qg <£1,J1;£2,J2> £2°(9J2f(.]2;t>

] @ £,
QBL<V1,V2> = 27 5<k'V1 — k'V2> ’CBLG{’ V1>
QgBL<£1’J1’£2’J2> = 27 5<£1.Ql _£2.92> ‘OQBL(elaJlae%JZ)wa)
¢(k)
e(k-vy)
47'(' ha<£1,J1,W) h2<£2,J27W>
N AL (w)

- o’ |
| _ /dkk (M) no/dV2 QBL(k, vk, vo) [klgi(}’(%gt)]

’ 2

‘ 2

CBL(k, Vl) =

OgBL(ela J17 227 J27 wa) —



