

Turbulent transport of beam ions

T. Dannert¹, S. Günter², T. Hauff², F. Jenko², X. Lapillonne¹, P. Lauber²

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland

²Max-Planck-Institut für Plasmaphysik, Euratom-Association, DE-85748 Garching, Germany

Energetic ions in fusion plasmas

- Fusion born α particles
 - \rightarrow isotropic velocity distribution
 - \rightarrow fixed birth energy 3.5 MeV
- Auxiliary heating and current drive
 - Ion Cyclotron Resonance Heating (ICRH)
 - \rightarrow pitch angle $\lambda = v_{||}/v \ll 1$
 - \rightarrow energies 100keV-1MeV
 - Neutral Beam Injection (NBI)
 - ightarrow pitch angle $\lambda \sim 1$
 - \rightarrow typical beam energy 40keV-100keV up to 1MeV in ITER

Turbulence driven by ITG modes.

Model

Beam ions from NBI:

- injected tangentially, large parallel velocity
- (only) thermal perpendicular velocity
- ${\ensuremath{\bullet}}$ co- or counter B
- no trapping

Modelled by an asymmetric, anisotropic Maxwellian with 3 characteristic temperatures T_-, T_+, T_\perp

$$F_{0b}(v_{\parallel},\mu) = \mathcal{N}e^{-\mu B_0/T_{\perp 0}} \left(e^{-(v_{\parallel}/v_{T-})^2} (1 - \Theta(v_{\parallel})) + e^{-(v_{\parallel}/v_{T+})^2} \Theta(v_{\parallel}) \right)$$

 \Rightarrow Analytical treatment of the equations possible

Normalizing velocities to thermal velocities, introduces the quantities

$$\tau_{\pm} = T_{0\pm}/T_0 \qquad \tau_{\perp} = T_{0\perp}/T_0$$

Beam ions are treated

- fully gyrokinetically
- as passive tracers
- \bullet with asymmetric $v_{||}$ grid

 $N_{v_{\parallel},-} = 16$ $N_{v_{\parallel},+} = 48$ $v_{\parallel,\min} = -3v_T v_{\parallel,\max} = 12.33v_T$

$$N_{x} = 32|96 \qquad N_{ky} = 4|16$$

$$N_{z} = 16$$

$$N_{v_{\parallel}} = 32 \qquad N_{\mu} = 8$$

$$v_{\parallel,\max} = 3v_{T} \qquad \mu_{\max} = 9TB_{\text{ref}}^{-1}$$

$$L_{x} = 25|100\rho_{s} \ k_{y,\min}\rho_{s} = 0.15|0.05$$

Simulations done with the GENE code in flux-tube geometry. [Dannert & Jenko, 2005, Jenko *et. al*, 2000] All changes to the gyrokinetic equations due to the equilibrium distribution function has been taken into account. Also all modification to the calculation of the moments.

Standard parameters for the beam ions are

$$R/L_n = 15$$
 $\tau_{\perp} = \tau_{-} = 1$ $\tau_{+} = 40$

Linear GENE Simulations

First insight

Beam ion particle flux over parallel velocity

CRPP

Switching off different terms in Vlasov equation \Rightarrow reduced model:

$$\frac{\partial F_1}{\partial t} + \frac{v_{\parallel}^2}{\sigma_j} \mathcal{K}_y \frac{\partial F_1}{\partial y} + \omega_{n_j} F_0 \frac{1}{\hat{B}} \frac{\partial \bar{\Phi}_1}{\partial y} = 0$$

 \rightarrow advection in y direction with the curvature drift $v_c = v_{\parallel}^2 \mathcal{K}_y / \sigma_j$ \rightarrow coupling to the background field via the drive term

Fourier expansion leads to a response for F_m due to an external perturbation $\bar{\Phi} = \sum_m \Phi_m \exp\{-i\omega t + ik_m y\}$

$$F_m = \frac{k_m \omega_{n_j} F_0}{\widehat{B} \left(\omega' + i\gamma \right)} \Phi_m$$

with the Doppler shifted frequency $\omega' = \omega_r \left(1 - \frac{v_{\parallel}^2 \mathcal{K}_y / \sigma_j}{\omega_r / k_m}\right) = \omega_r \left(1 - \frac{v_c}{v_{\text{ph}}}\right).$

 \rightarrow the drifting beam ion "sees" a shifted background mode frequency \rightarrow high velocities lead to high frequencies \Rightarrow no interaction

Further calculate the particle flux dependent on v_{\parallel} as

$$\Gamma_m(x, z, v_{\parallel}, t) = \omega_{n_j} \gamma^2 D_{\text{turb}}(x, k_m, z, t) \frac{F_{0j}(v_{\parallel})}{\omega'^2 + \gamma^2}$$

Dividing the flux by F_0 and the gradient, and using $D_{turb} = |v_{E,m}|^2 / \gamma$, we get a v_{\parallel} dependent diffusivity

$$D(k_m, z, v_{\parallel}) = \frac{\gamma^2}{\omega'^2 + \gamma^2} D_{turb}(k_m, z)$$

- \rightarrow independent of the beam energy τ_+
- \rightarrow dependent on background mode
- \rightarrow dependent on magnetic geometry

Flux over parallel velocity

Nonlinear GENE Simulations

Introduce the fast ions as third species in well saturated turbulence.

- shape is similar to the linearly calculated curves
- difference for higher particle energies: nonlinearly we get a $(E_{\rm particle}/T_{\rm e0})^{-1}$ decrease for $E_{\rm particle}\gtrsim 10T_{\rm e0}$

- Beam ion diffusivity up to turbulent background diffusivity
- Significant particle transport up to $E_{\rm particle}/E_{\rm thermal}\sim 10$
- Diffusivity only depends on geometry and the background

- Possible explanation of Asdex Upgrade current drive results
- Electromagnetic simulations
- Active treatment of the beam ions

Appendix

Velocities: $v_{Ti} \sim v_{Th} < v_{
m heam} \ll v_{Te}$

Typical frequency of the ITG turbulence: diamagnetic frequency $\omega_* \approx (k_y \rho_s) \frac{R}{L_{T_i}} \frac{c_s}{R}$

Particle frequencies

- transit frequency $\omega_{tr} = v_{\parallel}/qR = \frac{v_{\parallel}}{c_s} \frac{1}{q} \frac{c_s}{R}$ curvature drift frequency $\omega_c = \frac{v_{\parallel}^2}{\Omega R} k_{\perp} = \frac{v_{\parallel}^2}{c_s^2} (k_{\perp} \rho_s) \frac{c_s}{R}$

Velocities: $v_{Ti} \sim v_{Tb} < v_{beam} \ll v_{Te}$

Typical frequency of the ITG turbulence: diamagnetic frequency $\omega_* \approx (k_y \rho_s) \frac{R}{L_{T_i}} \frac{c_s}{R} \approx (1-3) \frac{c_s}{R}$

Particle frequencies

- transit frequency $\omega_{\rm tr} = v_{\parallel}/qR = \frac{v_{\parallel}}{c_s}\frac{1}{q}\frac{c_s}{R} \approx (1-40)\frac{c_s}{R}$
- curvature drift frequency $\omega_{\rm C} = \frac{v_{\parallel}^2}{\Omega R} k_{\perp} = \frac{v_{\parallel}^2}{c_s^2} (k_{\perp} \rho_s) \frac{c_s}{R} \approx (0.4 \dots) \frac{c_s}{R}$

 \Rightarrow all frequency ranges are overlapping \Rightarrow need simulations to sort them out Use discharge #29892@1.0s from TCV, CHEASE equilibrium, and the same gradients.

 $|\mathcal{K}_y|$ reduced, growth rate increased, real frequency reduced

Investigating the prefactor $\frac{\gamma^2}{\omega'^2 + \gamma^2}$

$$\begin{aligned} \frac{\partial g}{\partial t} + \alpha_j v_{\parallel} \frac{\partial F_1}{\partial z} + \sigma_j \alpha_j v_{\parallel} \left(\frac{F_{0-}}{\tau_-} + \frac{F_{0+}}{\tau_+} \right) \frac{\partial \bar{\Phi}_1}{\partial z} + \frac{1}{\hat{B}} \left(\frac{\partial \chi}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial \chi}{\partial y} \frac{\partial g}{\partial x} \right) \\ + \mathcal{D} \left(\frac{1}{\hat{B}} \frac{\partial \chi}{\partial y} - \frac{\mu \hat{B} + 2v_{\parallel}^2}{2\sigma_j} \mathcal{K}_x \right) + \frac{\mu \hat{B} + 2v_{\parallel}^2}{2\sigma_j} \left(\mathcal{K}_x \frac{\partial g}{\partial x} + \mathcal{K}_y \frac{\partial g}{\partial y} \right) \\ + \left[\frac{F_0 \mu \hat{B}}{2\tau_\perp} + v_{\parallel}^2 \left(\frac{F_{0-}}{\tau_-} + \frac{F_{0+}}{\tau_+} \right) \right] \left(\mathcal{K}_x \frac{\partial \chi}{\partial x} + \mathcal{K}_y \frac{\partial \chi}{\partial y} \right) = 0 \end{aligned}$$
with $\mathcal{K}_x = -\frac{2L_\perp}{R} \sin z$ and $\mathcal{K}_y = -\frac{2L_\perp}{R_0} (\cos z + \hat{s}z \sin z).$