Summary: Edge Working Group

R.J. Groebner and R.A. Moyer

21st US Transport Task Force Workshop Boulder, Colorado

March 25-28, 2008

SOL transport

> How do we characterize SOL turbulence?

≻What is origin of SOL flows?

>L-H threshold

> What is physics of L-H threshold?

> Do SOL flows affect L-H threshold? How?

> Pedestal boundary conditions

> Need to calculate edge particle source

> How do SOL flows affect flows inside LCFS?

> Pedestal structure

> Need predictive model for pedestal height

> What is physics of pedestal width?

> How do 3D magnetic fields affect edge particle transport?

≻ ELMs

> Need non-linear theory for ELM evolution

- > Looking back 4-5 years, much progress is evident
 - > Much improved data
 - > Many new measurements
 - Simultaneous measurements of multiple quantities are much more available
 - > New computational tools now available or under development
- The participation of ECC continues to enrich edge group
 Number of theory/modeling talks has risen markedly over last several years
- > And, the plasma edge appears to be slowly (if begrudgingly) giving up a few of its secrets

SOL Turbulence: How do we characterize SOL turbulence?

- A paradigm shift in last few years (LaBombard, Myra, Cziegler, Pace, Russell)
 - Smooth, continuous, small-scale transport model does not hold (LaBombard, Myra, Russell, Pace)
 - Transport on open field lines is highly intermittent this is a robustly and ubiquitously observed (in all plasma confinement devices)
- > Transport just inside last closed flux surface has strong outward ballooning character
- Intermittent structures (BLOBS, streamers?) are formed at periphery of confined plasma near outer midplane
- Plasma ejected at outer midplane tends to flow along field lines and at velocities approaching mach 1

- > There are a range of scales for structures that are produced
- > There is really no steady state in SOL
- > Plasma configuration affects flows flows can be blocked
- > These flows may affect core momentum, L-H threshold, fuelling,...
- > Big issue: How is circulation loop closed?
- > Very long correlation lengths observed in fluctuating potential in improved confinement modes in TJ-II (Hidalgo)

SOL Turbulence: What is origin of SOL flows?

> Joint session with momentum group to discuss this

- ExB can drive flows ion orbit loss gives positive potential in SOL, which perhaps drive flows (Chang)
- Momentum transported across LCFS by ejection of blobs (LaBombard, Myra, Diamond)
 - Symmetry-breaking required: more momentum ejected in one direction than in the opposite direction

> Transition may be mainly due to a reduction of convective loss more than a change in conductive loss (Moyer)

>Te fluctuations at edge remain unchanged or even rise at L-H

- We have known that reduction of turbulent particle transport in Hmode is partly due to a change of cross phase between potential and density fluctuations
- New observations show that cross phase already changed a short time before amplitude of fluctuations is reduced – that is, this change occurs shortly before L-H transition (Moyer)
- Cross phase of potential and density fluctuations may be more sensitive to changes in Er than is amplitude of density fluctuations
 - Perhaps small changes in Er due to small changes of Grad P in L-mode are sufficient to do this and to initiate the transition
- > Analytic model and simulations of long wavelength modes leads to identification of improved confinement in TORPEX (Ricci)

- ≻ Configuration effects on L-H threshold are very common
 ≻ e.g., B X ∇B drift effect
- SOL flows are strongly implicated in playing a role in these configuration effects (LaBombard)
 - Configuration may block flows in one direction and cause a change in boundary condition on rotation

- > Edge particle source needed for core transport modeling as well as pedestal modeling
- Had a significant discussion of edge modeling codes (Stacey, Rafiq, Canik, Callen)
 - >A low key benchmarking exercise has used several codes to examine same pedestal data sets
- These codes typically use transport coefficients as part of machinery to match profiles and then perform source calculations
 However, there is no unique set of transport coefficients
 - > Also, differences in grids have evidently contributed to differences in reported χ where no differences expected
 - > Do we need χ and D and V? Why not stick closer to the primitives that are measured fluxes?

Pedestal boundary conditions: Need to calculate edge particle source - 2

- > What is real uncertainty in calculation of poloidally-averaged particle source?
- > Do we need to understand SOL flows to do this correctly?
- >What is happening near inner divertor leg, where circulation loop for plasmas flows must close?

Pedestal boundary conditions: How do SOL flows affect flows inside LCFS?

- Strong evidence that SOL flows are providing a boundary condition for toroidal rotation inside LCFS (LaBombard, Brooks)
 - C-Mod data show core rotation going up and down in response to changes in SOL rotation
 - DIII-D data show that changing sign of core toroidal rotation does not have much effect on SOL flows
- > One possible scenario: SOL flow exerts a stress on core (Diamond)
 - Needs SOL flow speed to increase with radius (which is observed)
 - > Needs symmetry breaking
 - > (A deep linkage between momentum transport and particle transport?)

- > A predictive model for pedestal height in ELMing H-mode has been developed (Snyder)
 - Uses peeling-ballooning constraint on pressure profile with an empirical width scaling
 - Has successfully predicted an order of magnitude variation of pedestal height in DIII-D
 - > Prediction was made before experiment was done

- > Continuing work on edge gyrokinetic codes
 - Turbulence being added
- Some careful verification has been done (Rognlien/Xu)
 - Damping of GAMs has provided a good test case of neoclassical physics
 - Generally good agreement between analytic theory, TEMPEST, XGC and GYRO
- Coupling of codes has been initiated
 XCC + CEM allows initial studies of edge turbuly
 - >XGC + GEM allows initial studies of edge turbulence (Chen)
 - XGC0 + ELITE + NIMROD allows simulation of pedestal buildup, ELM onset and ELM non-linear evolution (Pankin)

- > Ever improving pedestal measurements are allowing us to start seeing some new trends in pedestal parameters
- > Good evidence of "critical" pressure gradient in C-Mod $\nabla P \sim I_p^2$ (Hughes)
- Edge CER measurements in C-Mod have been used for systematic studies of E_r and contributions from rotation and pressure gradient terms (McDermott)
 - Large vpol observed
 - \succ Very negative E_r values observed
 - > Machine size scaling study initiated

- > Evidence that pedestal width increases with increasing pedestal pressure in ELMing H-mode discharges (DIII-D)
- > Analytic pedestal model predicts temporal growth of pedestal width (Malkin)
 - This is observed in density width during ELM-free H-mode (Groebner)
- » "Neoclassical" pedestal model reproduces characteristics of pedestal buildup in ELM-free H-mode
 - > Model also predicts $\Delta_n \sim sqrt(T_i)$ during pedestal buildup (C.S.)
 - >This also observed
- Several analytic transport models compared against experiment (Stacey)
 - >ITG, ETG perhaps best in H-mode

Pedestal structure:

How do 3D magnetic fields affect edge particle transport?

- EDA H-modes, QH-modes and RMP H-modes all exhibit increased particle transport linked to 3D edge magnetic fields
 Thus, 3D fields provide opportunities for pedestal control
- Fast density measurements show that application of RMP initiates a prompt (within ~ 5 ms) reduction of core density – increase of SOL density (Zeng)
 - >RMP reduces decay time of injected pellets
 - Conclude that particle xport is increased

Pedestal structure:

How do 3D magnetic fields affect edge particle xport? -2

- Rapid density drop due to magnetic fluctuations in RFP is well diagnosed and nicely explained (Ding)
 - Measurements and modeling show why Rechester/Rosenbluth over-estimates electron thermal transport relative to particle transport
 - Does same physics apply to RMP or other perturbations in tokamak edges?
- Modeling with 3D magnetic geometry in XGC is being used to study RMP effects (G. Park)
- >M3D non-linear MHD code shows that plasma rotation provides some shielding of applied edge stochastic magnetic field (Strauss)

- > ELM control on ITER
 - Recent studies have led to a significant reduction in estimated ELM energy loss that ITER can tolerate
 - > Need for ELM mitigation well recognized
 - > The mainline ELM mitigation technique is pellet-pacing
 - > However, community does not have high confidence in this
 - >RMP ELM control is strongly supported by community
 - However, ITER has not accepted this recommendation due to lack of physics understanding, cost and impact on schedule
 - > But, ITER now seems to be considering this quite seriously

- > There has been interest in "validation" efforts within the Edge
 - \succ But, by and large, it appears to be a bit too early for this
 - There are some possibilities; e.g. data presented by Tynan may be ripe for comparisons with BOUT
 - >Well-focused, small scale efforts perhaps are appropriate
 - Also, verification test cases being set up at ECC website www.lehigh.edu/~inecc
- > However, some experimental studies could benefit from increased modeling support
 - But, it appears that we do not have the people to do this in a significant way
 - Code-experiment comparison work requires dedicated people

>This was a very good meeting for the Edge

THANKS to all who participated!