Magnetic-field scaling of turbulence-driven shear flows in a linear magnetized plasma

Z. Yan, G. R. Tynan, S. H. Muller, C. Holland, J. H. Yu, M. Xu University of California, San Diego, La Jolla, CA, 92093, USA

Abstract

Previous experimental studies carried out in a cylindrical helicon plasma device demonstrated the existence of an azimuthally symmetric radially sheared plasma fluid flow sustained by the Reynolds Stress against viscous damping in an Argon plasma at a magnetic field of 1 kG. In this work, the development of such flows is studied by applying velocimetry to fast-framed images for a variety of magnetic fields. Spectral analyses of the Reynolds Stress, obtained from direct Langmuir-probe measurements, are carried out to complete the turbulence analysis. These experimental results are compared with a self-consistent force-balance equation including the actions of the Reynolds Stress and collisional damping, providing a direct experimental test of the basic theoretical picture of drift-wave/shear-flow interactions.