DEPENDENCE OF THE PERTURBED ELECTRON TRANSPORT ON HEAT FLUX AND Q-PROFILE IN NSTX

D. Stutman, K. Tritz, L. Delgado, M. Finkenthal (JHU), M. Bell, R. Bell, S. Kaye, H. Kugel, B. LeBlanc (PPPL), F. Levinton (NOVA PHOTONICS) R. Maingi (ORNL)

The T_e profiles are observed to flatten with increasing beam power P_b , in the 'standard' NSTX H-mode. In addition, at high power, the Type-I ELMs produce global, ms scale T_e crashes of large amplitude. Besides being unusual, these phenomena raise the question how they will scale to a next step ST. The T_e flattening is associated with changes in the q-profile, with lower q-values in lower power shots. To try and separate the roles of the heating power and of q(r) in this effect, we performed experiments in which P_b and q(r) were independently varied and the electron transport perturbed with Li pellets. A multi-energy SXR diagnostic was used to follow the cold pulse propagation.

The results of P_b variation at fixed q show that at high power the cold pulse affects the entire plasma, while at low power the pulse is strongly damped in the central plasma, indicating a substantial reduction in central electron transport. This is also apparent from the power balance analysis, which shows χ_e decreasing several times in the plasma center. An interesting observation is also that the transport change occurs *without* a change in the T_e gradient. This seems to suggest that the heat flux itself can drive electron transport and might explain the large central χ_e in the absence of significant T_e gradients, a phenomenon also seen inside ITBs in conventional tokamaks.

The q change at fixed P_b has also profound effects on electron transport. With the high q values resulting from early heating at high P_b (the 'standard' NSTX H-mode scenario), a global and rapid T_e perturbation is observed following the pellet injection, similar to that from Type-I ELMs. With the low q values resulting from early heating at low P_b, the cold pulse propagation is slowed down inside the q=2 surface ($r/a \approx 0.7$), while T_e transiently increases inside the q=1 surface ($r/a \approx 0.3$). Since the magnetic shear is comparable in the two cases, these observations seem to suggest a major role for low order, integer q-surfaces in ITB formation on NSTX. This effect was also observed in conventional tokamaks, being attributed to the interplay between zonal flows and magnetic geometry (Austin *et al.*, PoP 2006). Due its large rho-star and low B, zonal flows may indeed play a larger role in NSTX.