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The Pedestal Remains a Critical Element

for Predictive Tokamak Modeling

• The critical dependence of global confinement on pedestal
height is well documented

• Our uncertainty in predicting pedestal height has not significantly
improved in last ~3 years

• Several efforts are needed to improve and test our pedestal
models

– Separate ELMs from transport between ELMS

– Quantify fluxes through all channels

– Include time-dependence

– Account for short scale lengths

– Extract experimental scaling from correlated parameters

• Prediction of pedestal pressure height is not the only goal

– Particle transport for fueling requirements

– Momentum confinement for core transport and SOL flows

– Poloidal variation of fluxes into the SOL
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The Pedestal is the Interface Between

the Core and Boundary Plasmas

• The H-mode pedestal results

from a transport barrier just

inside the separatrix

• The pedestal is usually

parameterized by a

hyperbolic tangent function
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The Edge Pedestal Height is Expected to

Strongly Influence ITER Performance

• For stiff temperature profiles
(fixed T/ T) core plasma

performance improves with

increasing pedestal energy

• The pedestal often serves as

a boundary condition for

integrated modeling of

tokamak performance
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Validated MHD Stability Constraint

Shifted Focus to Pedestal Width
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The ITPA Pedestal Database was

Created to Test Pedestal Models

• Pedestal widths not generally

available-> Fit pedestal top with a

stability constraint

• The different simple models ( 0 to 1)

represents a significant range of

predicted pedestal pressure

Fit to ITPA Database With 

Flow Shear Stabilization Constraint

T. Onjun (Phys. Plasmas 2002) 
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Even Single Device Scans Exhibit

Uncertain Scaling

• Difficulties arise for a number of reasons; time dependence,
correlation with MHD limit, codependent parameters, difficult
measurements,…

• We need a different approach than  “Try Again, Try Harder”
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Pedestal Strategy Analogous to Core

Transport Model Development

• From measure profiles
predict

– Fluxes

– fluctuations

• Predict profiles

• Models verify observed
scaling relations

• Predict Burning Plasma
Pedestal

• Measure Profiles

– Plasma

– fluxes (sources)

– fluctuations

• Time evolution of profiles

• Develop scaling relations

Experiment Theory

Kinsey et al, 43 NF 1854 (2003)
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Several Pedestal Models

are under Development
• TGLF: Quasi-linear approximation to gyrofluid/gyrokinetic simulation is

being developed for pedestal conditions

• Tempest (continuum) and XGC-1 (particle):Gyrokinetic models,

electromagnetic, encompassing pedestal and SOL, neoclassical, ion

and electron turbulence,…

• Possibility to include other effects such as paleoclassical, etc.

TGLF:  Staebler et al., 2006 IAEA
XGC-1: Chang et al., 2006 IAEATEMPEST: Xu et al., 2006 IAEA

Potential ( )
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First Separate ELM transport from

Total Pedestal Transport

• Start with clean ELM case

– Examine transport between

ELMs without large scale

turbulence

• ELM transport is important in

its own right.

– MHD transport, more global

scale instability

– Work is going forward with

non-linear MHD transport
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Non-linear ELM Model is

Under Development

• Predictions of pedestal loss at each ELM are required to

build a time-averaged pedestal model

– ELM induced loss of density, temperature and edge current

– Starting boundary conditions for pedestal evolution

MAST Visible Image of ELM
BOUT Simulation, early nonlinear phase,

Surface of constant n

A. Kirk (PRL 2004) 
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Pedestal Model Development Must

Overcome Significant Challenges

• Energy and particle fluxes through pedestal
– Ion source difficult to measure and poloidally asymmetric

– Possibility of 2D transport

• Time dependence
– Fast diagnostic time resolution

– Computationally expensive for models

• Small scale lengths
– Diagnostic spatial resolution

– Theoretical considerations

• Parametric scaling
– Important scaling parameters often experimentally

correlated
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Adequately Characterizing Pedestal

Transport is a Diagnostic Challenge
• Measurement of fluxes is the most basic and necessary

characterization of a transport system

• Challenges for pedestal flux measurement

– Exchange terms important; Detailed profiles of ions and electrons

– Ionization source; Significant within pedestal, difficult to measure, 2D

Stacey and Groebner, Phys. Plasmas 14, 012501 (2007)
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Diagnostics Need Improvement to

Adequately Measure Pedestal Transport

• All species need high spatial and temporal resolution

– Ion and electron density and temperature profiles

simultaneously to resolve pedestal structure

– Ti width may be very different from Te width

– Main ion measurements; we rely on impurity ion data

– Sufficient temporal response to follow evolution between ELMs

• Ionization source is important and difficult to measure

– Hollow profile difficult to invert

– 2D profile

– Difficult spectroscopic interpretation

• Profiles of other parameters needed include

– Fluctuations; Most diagnostics fixated on core plasma

– Rotation; Main ion rotation may be very different from impurities

– Pedestal bootstrap current; Time dependence is an issue
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Interpretive Modeling Approach

for the Ion Source 2D Profile

• Measure  ion flux to all surfaces

– Use toroidal symmetry and interpolation of sparse

measurements to determine profile of wall ion flux

– Neutral pressure measurements and modeling to determine

what fraction recycles

• Reconstruct plasma background

– Interpretive model may be best, but any tool that allows use of

all information

– Build background plasma variations to test sensitivity and

uncertainty

• Launch Monte Carlo neutrals

– Uses 2D ion wall flux and reconstructed plasma backgrounds

• Assess models’ sensitivity to pedestal ion source

– Help to determine required measurement accuracy
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Ion Source in Pedestal

May be Strongly Poloidally Asymmetric
• Divertor neutrals launched into

background plasma modeled

with UEDGE
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• Role of main chamber ion flux must

still be addressed
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2D Transport Analysis

May Be Necessary

• Poloidal local ion source can lead to 2D transport

– Poloidal variation in density and temperature

– Parallel ion redistribution flow at sound speed

– Parallel heat flux to maintain pressure balance

– Poloidal variation in radial transport

• Ion distribution can vary on flux surface

– Ion orbit loss distribution

– Inhomogeneous viscous force damping

• How do we diagnose 2D transport issues?
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Pedestal Transport is Inherently

Time-Dependent

• No examples of steady-state pedestal without applied or

intrinsic additional transport

– Resonant magnetic perturbations

– EHO in QH-mode

– EDA mode

• Density, temperature, current and/or heat and particle flux

evolve from one ELM to the next

– ELM cycle terminated by MHD constraint or dropping below H-

mode threshold

• Time-averaging over ELMs will convolve transport with MHD

limits

– If pedestal width grows between ELMs then time-averaged

width will depend on MHD limit
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Pedestal Profiles Continue to Build

Until the Next ELM

Long ELM-free period in DIII-D

Profiles continue to build until an ELM
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Both Widths and Gradients Can

Evolve Until the Next ELM
DIII-D Pedestal Example
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Experimentalists need to

Characterize Time Dependence

• Do pedestal widths for density, Te and Ti grow between

ELMs?

– Parametric dependence for time behavior of each of these

widths is needed

– Very few published results of pedestal evolution between ELMs

• Is density transport barrier width same as electron

temperature, or ion temperature?

• Does turbulence  suppression width follow width of density

and/or temperature?
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Time Dependence Will be a

Challenge for Models

• Profile evolution takes place over 10s of ms

• For codes that follow drift wave turbulence, ELM cycle is a

very long time

• Profile evolution also expensive for quasi-linear codes

• As MHD stability limit is approached, does transport change

in character?
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Small Pedestal Scale length Produces

Concerns for Theory and Measurements

• Steep Gradients are hard to measure

– Pedestal profile measurements do not typically include all

relevant parameters simultaneously; ne, Te ni, Ti, rotation,

turbulence, etc.

• Gradient scale lengths may be similar to turbulence spatial

scale

– Non-locality of transport, turbulence spreading

– Quasi-linear codes may not handle non-local transport

– Can non-local transport be diagnosed?
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Neoclassical Effects

Require Assessment
• Neoclassical transport and current may not follow simple

models in pedestal

– Bootstrap current important for transport as well as MHD limit

– New codes will address this issue

• Initial measurements

encouraging

• Time dependence also

important

D. Thomas (Phys. Plasmas 2005) 
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Experimental Scaling Can Offer

Important Insight

• While global databases have not revealed clear trends in

pedestal width, careful selected experiments can be

insightful

– Rho-star

– Neutral source

– Toroidal ripple

– Toroidal Rotation

– Beta versus power dependence

– Shape

• Models should seek to reproduce experimentally

documented trends
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Initial Study Finds Weak *

Dependence for Pedestal Width

• Generic ExB shearing
models predict ped  ~ i,

unfavorable for ITER

• Initial results indicate

pedestal width constant

fraction of minor radius

• Significant implications for

ITER

• Plans for factor of 4 * scan

between JET and DIII-D

T.H. Osborne, Bull. Am. Phys. Soc. 48, 185 (2003)
M. E. Fenstermacher et al., Nucl. Fusion 45 1493 (2005)
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Pedestal Density Width Correlated

with Temperature Width

• Density profile should be

consistent with transport and ion

source profiles

• DIII-D and C-MOD pedestal

match dimensionless

parameters. Kinetic modeling

indicates consistency with

density profile

• Interpretation of dimensionless

experiments more complicated

when dealing with dimensional

atomic physics

Te and ne pedestals scaled with dimensionless

parameters in C-Mod/DIII-D experiment

D. Mossessian (Phys. Plasmas 2003) 
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Toroidal Ripple or Rotation Cause

of JT-60U Pedestal Reduction

• A dimensional comparison

between JET and JT-60U

yielded ~30% lower

pedestal pressure in JT-60U

• Is difference due to ripple

induced Er and rotation

profile?

• Such discrepancies add

uncertainty to multi-

machine database analysis

JET/JT-60U 

Dimensionally Identical Comparison

G. Saibene (Nucl Fusion 2005) 
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Pedestal Width Increases with

Global Beta and/or Input Power

• Pedestal width increases with power

and/or beta, observed in several

tokamaks

• Ti profile more affected than Te

• A transport or MHD stability effect

• Power and beta are highly correlated

and difficult to separate experimentally

C. Maggi et al, submitted to Nucl. Fusion
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Shape Can Also Affect Pedestal Width

• Improved shaping:

–Pedestal increases with

higher power and/or

beta

–Pedestal increase greater

for improved shaping

–Pedestal pressure

gradient consistent with

MHD stability

• Is shape dependence a

transport or MHD stability

effect?
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Experimental Scaling Studies Offer

Insight, but with Challenges

• Careful scaling experiments can isolate and clarify the

physics controlling pedestal structure

• Important parameters are often correlated. Careful

experimental scans will be required to separate them

• Simultaneous measurement of electron and ion pedestal

profiles with adequate time dependence required to

interpret scaling results

• Cross machine comparison can produce wider parameter

scans, but hidden variables (e.g., ripple, wall material) must

be taken into account

• Possible role of neutrals (atomic physics) requires careful

assessment of dimensionless scaling arguments
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Pedestal Poised for Progress

but Critical Issues Need Attention

• Pedestal clearly a critical issue in predicting global

tokamak performance

• Some critical questions to address:

• How do we extract size scaling ( *) from our experiments?

– What dimensionless scaling arguments are valid when neutrals

may play a role?

• What role do neutrals play in transport barrier formation and

its structure?

– How will we measure the 2D neutral profile, and how

accurately do we need it?

• What experimental data and analysis is needed to test the

developing models?

– Significant lead time to acquire desired data (diagnostic

development) and analysis


