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Fully-developed turbulence

ω vorticity, v velocity, F external force, ν viscosity and ρ=1 density,
plus initial conditions and boundary conditions

Turbulent flows are solutions of Navier-Stokes equations :

Fully-developed turbulence when Reynolds number
is very large, i.e., when the nonlinear term strongly

dominates the viscous linear term.

Fluid hypothesis : observation is made at scales
much larger than the mean free path of particles.

Turbulence is a property of flows which involves
a large number of degrees of freedom interacting together, i.e.,

a crowd (turba,ae) of vortices (turbo, turbinis).



One realization of a fully developed turbulent flow

Physical space:
Modulus of vorticity

Wavenumber space:
Energy spectrum





   

Schneider & Farge
Phys. Rev. Lett.,
December 2005

2D turbulent flow in a cylindrical container

 Random
initial

conditions

No-slip
boundary
conditions

using
volume

penalization

DNS
N=10242



Turbulence practice is the ‘art of averaging’

Reynolds averaging (1883) :

Proposition :

with

Fluctuations = coherent fluctuations + incoherent fluctuations

but nonlinearity is hard to handle since there is no scale separation :

Field       = Mean       + Fluctuations



Research program to study turbulence

'In the last decade we have experienced a conceptual shift in our view of
turbulence. For flows with strong velocity shear, or other organizing

characteristics, many now feel that the spectral description has inhibited
fundamental progress. The next "El Dorado" lies in the mathematical
understanding of coherent structures in weakly dissipative fluids: the
formation, evolution and interaction of metastable vortex-like solutions of

nonlinear partial differential equations...’

We have proposed to replace
the Fourier representation by the wavelet representation

to keep track of coherent structures and to replace
classical averages by nonlinear filtering of wavelet coefficients.

Norman Zabusky,
Physics Today, 1984

Farge, 1992,
Ann. Rev. Fluid Mech., 24

Farge and Rabreau, 1988,
C. R. Acad. Paris, 307

Farge and Schneider, 2006
Encyclopedia Math. Phys., Elsevier



Grid points Fourier
modes

Δx Δk = A

 Integral transforms

Spectral representation Space representation 



Gabor
(1946)

Wavelets
(1984)

Other representations

Space-wavenumber
representation

Space-scale
representation

Δx Δk = A



Wavelet representation

Wavelets are functions well localized in both physical and spectral space. 
The wavelet representation is based on a set of dilated and translated 
wavelets           indexed by scale j and position i .

The space locality  of          is kept by each wavelet coefficient 
since each coefficient is indexed by its scale j and its position i .
Therefore filtering in wavelet basis preserves space locality.

In contrast Fourier coefficients are indexed by wavenumbers and therefore 
one needs to know the phase of all coefficients to preserve space locality.
Therefore filtering in Fourier basis looses space locality. 

Special wavelets can generate orthogonal bases. Using them, a
signal sampled on N points is represented by N wavelet coefficients
and the computing cost of the fast wavelet transform is proportional 
to N operations.
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Farge, Ann. Rev. Fluid Mech.,
24, 1992

Farge and Schneider, Encyclopedia
of Mathematical Physics, 2006



Wavelet transforms

                              Analyzing functions :
                            Translates and dilates
                 of an oscillating function (zero mean)

Well localized in space and wavenumber

     Wavelet coefficients :

      Continuous wavelets      Orthogonal wavelets

• Translates and dilates can
   vary continuously
• Redundant basis

• Translates and dilates sit on a
  discrete dyadic grid
• Orthogonal basis

• Easily read coefficients
• Unfold in both space and scale
• Good for analysis

• Filtering and reconstruction
• Compression (JPEG 2000)
• Good for computation (N oper.)



    Multiscale representation

ij

Orthogonal wavelet basis of N=512 = 29 functions

Dyadic grid
256
128
64
32
16
8
4
2
1
1

small
scales

large
scales

space



Extraction of coherent structures

     Since there is not yet a universal definition of coherent structures
observed in turbulent flows (from laboratory and numerical experiments),

we adopt an apophetic method :
instead of defining what they are, we define what they are not.

We propose the minimal statement:
‘Coherent structures are different from noise’

Extracting coherent structures becomes a denoising problem,
not requiring any hypotheses on the coherent structures

but only on the noise to be eliminated.

Choosing the simplest hypothesis as a first guess,
 we suppose we want to eliminate an additive Gaussian white noise.

Farge, Schneider, Kevlahan,
Phys. Fluids, 11 (8), 1999
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Denoising algorithm

Gaussian white noise is by definition equidistributed among all
modes and the amplitude of the coefficients is given by its r.m.s.,
whatever the functional basis one considers.

Therefore the coefficients of a noisy signal whose amplitudes are
much larger than the r.m.s. of the noise belong to the denoised signal.
This procedure corresponds to nonlinear filtering.

The advantage of performing such a nonlinear filtering using the
wavelet representation is that the wavelet coefficients preserve the
space locality.

Since we do not know a priori the r.m.s. of the noise, we have
proposed an iterative procedure which takes as first guess the r.m.s.
of the noisy signal and does not require adjusting any parameter.
The more noisy the signal is, the faster the convergence.

Azzalini, Farge, Schneider,
Appl. Comput. Harmonic Analysis, 18 (2), 2005



1.  Goal:
           Extraction of coherent structures
           from a noise which can then be modelled
           to compute the flow evolution.

2.  Apophatic principle:
 - no hypothesis on the structures,
 - only hypothesis on the noise,
 - simplest hypothesis as our first choice.

3.  Hypothesis on the noise:
        fn = f + w
w :    Gaussian white noise,
σ2 :   variance of the noise,
N  :   number of coefficients.

4.  Computation of the threshold:

5.  Denoised signal:
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Wavelet-based denoising 

Donoho and Johnstone,
Biometrica, 81, 1994





•       Or from laboratory experiment,
    measured using 

Particle Image Velocimetry (PIV)
 at resolution 1282 

•    Either from numerical experiment,
  computed using 

Direct Numerical Simulation (DNS) 
at resolution 5122

Application to 2D turbulent flows

in collaboration with Jori E. Ruppert-Felsot, 
Erhan Sharon and Harry L. Swinney

Center for Nonlinear Dynamics, 
   University of Texas at Austin



Total flow 

0.2 % of coefficients
99.8 % of kinetic energy
93.6 % of enstrophy

99.8 % of coefficients
0.2 % of kinetic energy 
6.4 % of enstrophy

Incoherent flow Coherent flow 

Decomposition of 2D vorticity field 
in numerical experiment

+ωmin +ωmax

+

DNS
N=5122



1D cut of the vorticity field
in numerical experiment

DNS
N=5122

ωt=ωc+ωi

Zt=Zc+Zi

Total

Coherent
0.2 % N
99.8 % E
93.6 % Z

Incoherent
99.8 % N
0.2 % E
6.4 % Z





ωmin

log p(ω)

PDF of vorticity 
in numerical experiment

DNS
N=5122

Total

Coherent
0.2 % N
99.8 % E
93.6 % Z

ωmax

Incoherent
99.8 % N
0.2 % E
6.4 % Z



Enstrophy spectrum 
in numerical experiment

Coherent 

k-5 scaling,
i.e. long-range

correlation

log k

log Z(k)

Incoherent 

k-1 scaling,
i.e. enstrophy
equipartition
since E=k-2 Z

DNS
N=5122

Coherent
0.2 % N
99.8 % E
93.6 % Z

Incoherent
99.8 % N
0.2 % E
6.4 % Z

Total



A posteriori proof of coherence
    in numerical experiment

Coherent Incoherent 

DNS
N=5122

Total 

Coherent structures are regions where
 nonlinearity is depleted,

thus, for 2D flows:

Arnold, 1965, 
Joyce & Montgomery, 1973
Robert & Sommeria, 1991

ω = sinh(ψ)

ψ ψψ

ω ω ω



Wavelet filtering of the flow evolution
in numerical experiment

Beta,Schneider, Farge 2003,
Nonlinear Sci. Num. Simul., 8



Passive scalar advection
from numerical experiment

DNS
N=5122

Incoherent flowCoherent flowTotal flow

= +

0.2%N
99.8%E
93.6%Z

99.8%N
0.2%E
6.4%Z

Beta,Schneider,
Farge 2003,

Chemical
Eng. Sci., 58

Beta,Schneider,
Farge 2003,

Nonlinear Sci.
Num. Simul., 8



Time evolution of the concentration variance
from numerical experiment

t

t2

t

σ2(0) – σ2(t)

Coherent flow

anomalous diffusion
due to transport 

by vortices

Incoherent flow

classical diffusion

DNS
N=5122



by the total flow by the coherent flow by the incoherent flow

Advection of tracer particles 
from numerical experiment

Diffusion by Brownian motion

Transport by vortices

DNS
N=5122

= +

0.2 % of coefficients
99.8 % of kinetic energy
93.6 % of enstrophy

99.8 % of coefficients
0.2 % of kinetic energy 
6.4 % of enstrophy

Beta,Schneider, Farge 2003,
Nonlinear Sci. Num. Simul., 8



Time correlation of the Lagrangian velocity
from numerical experiment

Total & Coherent flow
long time correlation

Incoherent flow
short time correlation

DNS
N=5122

Incoherent 
Total 

Coherent



• Rotate up to 1.0 Hz
• Mechanical pumping of fluid

through hexagonal array of
sources and sinks

• 100 mm seed particules

• PIV to measure velocity fields
and calculate vorticity fields

Rotating tank experiment



Decomposition of 2D vorticity field
in laboratory experiment

Coherent vorticity
99% E
80% Z

Incoherent vorticity
1% E
20% Z

Total vorticity
100% E
100% Z

2% N 98% N

−ωmin −ωmax

PIV
N=1282



Enstrophy in wavelet space
     in numerical experiment

2% coherent modes
are below the interface

98% N incoherent modes
are above the interface

Interface

small
scales

space

large
scales



  

  PDF of vorticity
in laboratory experiment

PIV
N=1282

Incoherent
Coherent
Total

−ω

log p(ω)



  

Enstrophy spectrum
in laboratory experiment

PIV
N=1282

log k

log Z

Total
Coherent

Incoherent 

k+1 scaling,
i.e. enstrophy
equipartition

k-3 scaling,
i.e. long-range

correlation



A posteriori proof of coherence
in laboratory experiment

Coherent Incoherent Total 

Arnold, 1965, 
Joyce & Montgomery, 1973
Robert & Sommeria, 1991

ω = f(ψ)PIV
N=1282

ω

ψ

ω

ψ

ω

ψ

Coherent structures are regions where
 nonlinearity is depleted,

thus, for 2D flows:



 Passive scalar advection 
in laboratory experiment

PIV
N=1282

Transport by 
the coherent
vortices :

Diffusion by
the incoherent
background :



Advection of tracer particles 
in laboratory experiment

PIV
N=1282

Transport by vortices

Diffusion by Brownian motion



in collaboration with Mike Rogers
Center for Turbulence Research, 
NASA-Ames and Stanford University

• from numerical experiment
       of a turbulent mixing layer,

  computed using DNS at resolution 512 x256 x 128 :

Application to 3D turbulent flows

in collaboration with Yukio Kaneda,
Katsunori Yoshimatsu and Naoya Okamoto

Computer Sciences Department, 
             Nagoya University

• from numerical experiment
of homogeneous isotropic turbulence,

  computed using DNS at resolution 20483 :



3D turbulent mixing layer



  3% N          97% N     

N=512x256x128

3D turbulent mixing layer

99% E
83% Z

   1% E 
17% Z

Schneider, Farge, Pellegrino,
Rogers, J. Fluid Mech., 534, 2005



Total vorticity

Rλ=732 
Re=5 105

Visualization
 at 2563

+

2.6 % N coefficients
80% enstrophy

99% energy

97.4 % N coefficients
20 % enstrophy

1% energy

Incoherent vorticityCoherent vorticity

DNS
N=20483

Modulus of vorticity field
in numerical experiment 

|ω|=5σ 

|ω|=5σ 

|ω|=5/3σ 

with σ=(2Ζ)1/2 

Phys. Fluids, in revision, 2007







Multiscale Coherent
k-5/3 scaling, i.e.

long-range correlation

Multiscale Incoherent
k+2 scaling, i.e.

energy equipartition

DNS
N=20483

Energy spectrum
in numerical experiment

log k

log E(k)

k-5/3

2.6 % N coefficients
80% enstrophy

99% energy

k+2



DNS
N=20483

PDF of velocity 

The total and coherent flows have the same extrema.
The incoherent flow has a Gaussian PDF,

therefore its effect should be easy to model

log p(v)

v

2.6 % N coefficients
99% energy



  

RλRλ

E Z

Energy and enstrophy versus Rλ

 When Rλ increases :
•    the incoherent energy decreases,
•    the incoherent enstrophy increases.

We conjecture that the incoherent enstrophy 
quantifies the turbulence level.

100 100 10001000

Okamoto,
Yoshimatsu,

Schneider, Farge
and Kaneda,
Phys. Fluids,

in revision, 2007



Nonlinear transfers and energy fluxes 

ttt

cci

icc, iic

ccc
coherent flux

iic, iii
incoherent flux

Inertial range

Phys. Fluids, in revision, 2007



Rλ=168
Re=3 104 

Zoom at 643

3% N coefficients
99% energy
79% enstrophy

97 % N coefficients
1 % energy 
21 % enstrophy

Incoherent vorticityCoherent vorticity

Total vorticity

+

DNS
N=2563

Wavelet extraction in 3D vorticity field 
in numerical experiment

Farge, Pellegrino, Schneider,
PRL, 87 (55), 2001



Total vorticity

3 % of coefficients
99% of kinetic energy
71% of enstrophy

97% of coefficients
1% of kinetic energy 
29% of enstrophy

Small scale
vorticity

Large scale
vorticity

+

DNS
N=2563

Fourier extraction in 3D vorticity field 
in numerical experiment

Farge, Schneider et al.,
Phys. Fluids, 15 (10), 2003

Rλ=168
Re=3 104 

Zoom at 643



Coherent
Velocity parallel to vorticity

Incoherent
Velocity orthogonal to vorticity

DNS
N=2563

Relative helicity 
in numerical experiment
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" tubes sheets

Farge, Pellegrino,
Schneider,

PRL, 87 (55), 2001



Interpretation of the turbulent cascade

'The terms "scale of motion" or "eddy of size l " appear repeatedly in the
treatments of the inertial range. One gets an impression of little, randomly
distributed whirls in the fluid, with the cascade process consisting of the
fission of the whirls into smaller ones, after the fashion of Richardson's poem.
This picture seems drastically in conflict with what can be inferred about the
qualitative structures of high-Reynolds number turbulence from laboratory
vizualization techniques and from the application of the Kelvin's circulation
theorem'.

We should find a new interpretation of the turbulent cascade,
taking into account the nonlinear dynamics of Navier-Stokes equations

and the formation of coherent vortices in regions of strong shear.

Robert Kraichnan, 
On Kolmogorov’s inertial range theories,
J. Fluid Mech., 62, 305-330, 1974



New interpretation of the energy cascade
Fourier space viewpoint

No spectral gap between 
production and dissipation



New interpretation of the energy cascade
Physical space viewpoint



Linear
dissipation

Nonlinear interactions

Interface η

Small scales

Large scales

<η>

New interpretation of the energy cascade
Wavelet space viewpoint



Conclusion

The description of turbulent flows in terms of mean value plus
random fluctuations seems eroded since there is no scale separation
in the fully-developed turbulent regime.

We have developed a wavelet-based filter to separate the coherent
fluctuations from the incoherent ones. The algorithm works in any space
dimension, has no adjustable parameter and is fast, requiring only
order N operations.

In each flow realization fluctuations are thus split into two orthogonal
components which exhibit different statistics:
- coherent fluctuations, which are long-range correlated and
  non-Gaussian, and correspond to coherent vortices,
- incoherent fluctuations, which are decorrelated and
  Gaussian, and correspond to a random background flow.



Perspectives

The nonlinear wavelet filter
disentangles two different dynamics :

•     a nonlinear dynamics, corresponding to
      transport by the coherent vortices,
•     a linear dynamics corresponding to
      turbulent dissipation.

We conjecture that
 discarding the incoherent flow

may be sufficient to model turbulent dissipation

⇒  Coherent Vortex Simulation (CVS).



Development of the CVS model equations (I)

Two–dimensional Navier–Stokes equations in vorticity–velocity for-

mulation

∂tω + ~v · ∇ω − ν∇2ω = ∇× ~f (1)

∇ · ~v = 0

ω(0, ~x) = ω0

with the vorticity ω = ∇× ~v, and the velocity ~v; ~f is a given forcing,

and ν > 0 the kinematic constant viscosity.

Completed with periodic boundary conditions.

The velocity can be reconstructed from the vorticity using the Biot-

Savart relation,

~v = ∇⊥(∇2)−1ω (2)

with ∇⊥ = (−∂y, ∂x).



Development of the CVS model equations (II)

Using the decomposition of the flow into coherent and incoherent

componenents, i.e.

ω = ωC + ωI and ~v = ~vC + ~vI , (3)

and projecting (1) onto coherent and incoherent components we ob-

tain an equivalent system

∂tωC + (~vC · ∇ωC + ~vC · ∇ωI + ~vI · ∇ωC + ~vI · ∇ωI)C − ν∇2ωC = ∇× ~fC

∂tωI + (~vC · ∇ωC + ~vC · ∇ωI + ~vI · ∇ωC + ~vI · ∇ωI)I − ν∇2ωI = ∇× ~fI

∇ · ~vC = 0 and ∇ · ~vI = 0

ωC(0, ~x) = (ω0)C and ωI(0, ~x) = (ω0)I

which describes the evolution of the coherent and incoherent flow

and their coupling in the spirit of nonlinear Galerkin methods, see

e.g. (P. Constantin and C. Foias, 1988).



Estimations for the magnitude of the different terms (II)

This yields the following orders of magnitude of the different terms:

• O(1) terms: ∇wI and ∇2ωI

• O(ε) terms: ωI

• O(ε2) terms: ~vI

The terms for the coherent flow (ωC ,∇ωC ,∇2ωC , ~vC) are all by con-

struction of O(1). Neglecting terms of increasing orders we obtain a

hierarchy of CVS models.



Development of the CVS model equations (V)

Retaining only terms containing the coherent flow we obtain the fol-

lowing model equations:

CVS O(1)

∂tωC + (~vC · ∇ωC)C − ν∇2ωC = ∇× ~fC (5)

∇ · ~vC = 0

ωC(0, ~x) = (ω0)C

Note that in this system the influence of the incoherent flow is com-

pletely neglected and only the time evolution of the coherent flow is

computed.



Development of the CVS model equations (VI)

Retaining the O(1) and additionally the O(ε) terms we obtain more

complete equations:

CVS O(ε)

∂tωC + (~vC · ∇ωC + ~vC · ∇ωI)C − ν∇2ωC = ∇× ~fC (6)

∂tωI + (~vC · ∇ωC + ~vC · ∇ωI)I − ν∇2ωI = ∇× ~fI (7)

∇ · ~vC = 0 and ∇ · ~vI = 0

ωC(0, ~x) = (ω0)C and ωI(0, ~x) = (ω0)I

We observe that the equation for ωI is a linear advection–diffusion

equation, where the coherent velocity ~vC is given.



Results for the CVS O(ε) model (I)

Term ε0 ε1 εit
(~vC · ∇ωC)C 1 1 1

(~vC · ∇ωC)I 7.69 · 10−1 5.50 · 10−1 9.51 · 10−2

(~vC · ∇ωI)C 4.59 · 10−1 2.97 · 10−1 6.37 · 10−2

(~vC · ∇ωI)I 9.47 · 10−1 5.34 · 10−1 8.22 · 10−2

(~vI · ∇ωC)C 7.93 · 10−2 7.78 · 10−3 3.29 · 10−4

(~vI · ∇ωC)I 6.25 · 10−2 9.99 · 10−3 2.81 · 10−4

(~vI · ∇ωI)C 3.03 · 10−2 1.40 · 10−3 1.69 · 10−5

(~vI · ∇ωI)I 6.95 · 10−2 3.77 · 10−3 2.25 · 10−5

Relative norms of the nonlinear terms with respect to (~vC · ∇ωC)C

using different thresholds ε. The values are averaged in time over

20τ .



 Coherent Vortex Simulation (CVS)

1. Projection of vorticity onto an orthogonal wavelet basis.

2. Extraction of coherent vortices using orthogonal wavelets.

3. Computation of the coherent vorticity by inverse transform.

4. Computation of the coherent velocity using Biot-Savart’s law. 

5. Addition of a security zone in wavelet space.

6. Integration of Navier-Stokes of in the reduced wavelet basis.

7. Use volume penalization to describe solid walls and obstacles. 

Farge and Schneider,
Flow Turbulence and Combustion,

66, 2001

Farge, Schneider
 and Kevlahan,

Phys. Fluids, 11 (8), 1999

Schneider, Farge,
Azzalini and Ziuber

J. Turbulence, 7 (44), 2006



1. Selection of the wavelet
coefficients whose modulus

       is larger than the threshold.

2. Construction of a ‘graded-
tree’ which defines the
‘interface’ between the
coherent and incoherent
wavelet coefficients.

3. Addition of a ‘security zone’
which corresponds to
dealiasing.

Adapted wavelet basis



  Dipole impinging on a wall at Re= 1000
Time evolution of vorticity computed by CVS

Schneider and Farge,
in ENUMATH 2005

Springer, 2006



   Adapted grid generated from wavelets
Time evolution of the grid computed by CVS

Schneider and Farge,
in ENUMATH 2005

Springer, 2006



  Dipole impinging on a wall at Re= 1000
Time evolution of E and Z computed by CVS

Schneider and Farge, in ENUMATH 2005, Springer, 2006



DNS CVS

3D mixing layer
Comparison between DNS and CVS

4 eddy turnover times Schneider, Farge, Pellegrino,
Rogers, J. Fluid Mech., 534, 2005



8 eddy turnover times

DNS CVS

Schneider, Farge, Pellegrino,
Rogers, J. Fluid Mech., 534, 2005

3D mixing layer
Comparison between DNS and CVS



12 eddy turnover times

DNS CVS

Schneider, Farge, Pellegrino,
Rogers, J. Fluid Mech., 534, 2005

3D mixing layer
Comparison between DNS and CVS
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