Core Measurements of Magnetic Fluctuation-Induced Particle and Momentum Flux in MST

$W.X. Ding^{1,2}$,

D.L. Brower^{1,2}, D.Craig^{2,3}, B.H. Deng¹, G.Fiksel^{2,4}, V.Mirnov^{2,4}, J.Sarff^{2,4}, S. Prager^{2,4}, T.Yates¹

- 1) Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California 90095
- 2) Center for Magnetic Self-Organization in Astrophysical and Laboratory Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706
- 3) Department of Physics, Wheaton College, Wheaton, IL 60187

UCLA

4) Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706

Introduction

Magnetic fluctuations play an important role in particle and momentum transport in the laboratory plasmas

Transport also determines equilibrium dynamics

Introduction

Magnetic fluctuations play an important role in particle and momentum transport in the laboratory plasmas

Transport also determines equilibrium dynamics

Outline

- (1) Measurement of density gradient fluctuation
- (2) Measurement of particle transport by magnetic fluctuations
- (3) Measurement of momentum transport (convective)

Identify the role of stochastic magnetic field in particle and momentum transport.

 $<\delta j_{{}_{/\!/,e}}\delta b_r>$

eB

Madison Symmetric Torus

MST Reversed-Field Pinch (RFP) is toroidal configuration with relatively weak toroidal magnetic field B_T (i.e., $B_T \sim B_p$)

$$q(r) = \frac{r}{R} \frac{B_T}{B_P} < 1$$

$$\begin{split} R_0 &= 1.5 \text{ m}, \text{ a} = 0.51 \text{ m}, \text{ I}_p < 600 \text{ kA} \text{ , } \text{ B}_T \sim 3\text{-}4 \text{ kG}, \\ n_e &\sim 10^{19} \text{ m}^{\text{-}3\text{-}}, \text{T}_{e0} < 1.3 \text{keV} \text{ ,}\beta = <p>/B^2(a) = 15\% \end{split}$$

Particle Balance Equation

Measurement of magnetic fluctuation and mean electron velocity by Faraday rotation

$$\nabla \bullet \Gamma_p^M = V_{//,e} \nabla \frac{<\delta n \delta b_r >}{B} = \frac{V_{//,e}}{B} < (\nabla \delta n) \delta b_r > + \frac{V_{//,e}}{B} < (\delta n) \nabla \delta b_r > \nabla b_r(0) \approx 0 \ , \ \delta n(0) = 0$$

Measurement of magnetic fluctuation and mean electron velocity by Faraday rotation

$$\nabla \bullet \Gamma_p^M = V_{//,e} \nabla \frac{<\delta n \delta b_r >}{B} = \frac{V_{//,e}}{B} < (\nabla \delta n) \delta b_r > + \frac{V_{//,e}}{B} < (\delta n) \nabla \delta b_r >$$
$$\nabla b_r(0) \approx 0 \ , \ \delta n(0) = 0$$

Measurement of magnetic fluctuation and mean electron velocity by Faraday rotation

$$\nabla \bullet \Gamma_{p}^{M} = V_{l/,e} \nabla \frac{\langle \delta n \delta b_{r} \rangle}{B} = \frac{V_{l/,e}}{B} \langle (\nabla \delta n) \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r} \rangle + \frac{V_{l/,e}}{B} \langle (\delta n) \nabla \delta b_{r}$$

Ding, et al. PRL (2004)

$\nabla \delta n$ measurement by a new differential interferometer

Differential Interferometer measures phase between closelyspaced laser beams

FIR Differential Interferometer System

MST Far-Infrared Differential Interferometer System

interferometer

Localization of Density Gradient Fluctuations

For dominate m=1 mode x=2 cm 40x=21 cm $\tilde{\phi} = \int \delta n(r) \cos \theta dz$ 20 Z (cm) 0-Ζ -20 $\partial \tilde{n}(r)$ $= \frac{\partial}{\partial x} \tilde{\phi}(x) = \frac{\Delta \phi(x)}{\Delta x}$ -dr -40 0.2 0.6 0.8 0.4 1.0 $\cos(\theta)$ See poster, P48(ding)

Time History of Differential Interferometer

Density Change and Convective Particle Flux

 $n_e(r) [10^{13} cm^{-3}]$

Density Change and Convective Particle Flux

Density change is balanced by the convective particle transport

Momentum dynamics

Parallel momentum changes much faster than classical dissipation

Parallel Momentum Balance

$$\frac{\partial}{\partial t} < \rho V_{//} > + \nabla \cdot \Gamma_{p} = v_{//} \nabla^{2} < \rho V_{//} > + M(r,t) \text{ (other momentum sources)}$$
See Poster P54 (Kuritsyn)
Fluctuation induced momentum flux
$$\Gamma_{q} = \Gamma_{q}^{M} + \Gamma_{q}^{E} \leftarrow \begin{array}{c} \text{Electrostatics} \\ \text{fluctuations} \end{array}$$
Magnetic fluctuations
$$\nabla \cdot \Gamma_{q}^{M} = \nabla < \frac{\delta p_{//} \delta b_{r}}{B} > = T_{//} \nabla \frac{\langle \delta n \delta b_{r} \rangle}{B} + n \nabla \frac{\langle \delta T_{//} \delta b_{r} \rangle}{B}$$
Convective momentum flux
$$T_{//} \nabla \cdot \Gamma_{p}^{M} \leftarrow Particle \text{ flux}$$

Magnetic momentum flux and parallel momentum change

Momentum flux significantly contributes to parallel momentum change

Momentum flux changes direction away from magnetic axis

Momentum flux changes direction away from magnetic axis

The change of direction is consistent with momentum transport instead of total momentum loss

- Convective particle transport due to stochastic magnetic field has been measured by differential interferometer and Faraday rotation
- (2) Magnetic particle flux can account for the change of density on magnetic axis
- (3) Magnetic momentum flux significantly contributes to the change of parallel momentum in the core

Relevant poster: P48(ding), P100 (Brower), P54(Kuritsyn), P52(Ebrahimi)