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Outline

• Motivation: ELM control for ITER
– Resonant magnetic perturbations (RMPs) have been shown to suppress/reduce

ELMs in DIII-D H-mode plasmas (… and JET more recently)
• Do RMPs control ELMs through stochastic edge transport?

– RMPs reduce edge ∇p below Type-I ELM stability boundary
– TRIP3D field line tracer developed for DIII-D external magnetic field model
– E3D Braginskii fluid transport code specialized for stochastic fields

• Calculation of non-axisymmetric magnetic footprints
qualitatively matches experimental observations
– E3D simulations show that heat flux flows efficiently along the perturbed invariant

manifolds of the magnetic field
– Observations can be used to benchmark magnetic field model

• However, predicted thermal conduction appears greater than
experimental observations
– Measured transport appears to be more convective than conductive
– More physics input required: flux-limited kinetic transport, rotational shielding



RMPs completely eliminate ELMs in DIII-D with
ITER-similar shapes and pedestal collisionalities

• RMP-induced transport must replace ELM transport!
• High-confinement tokamaks (H-mode) rely on impulsive ELM transport to

remove heat & impurities
• Type-I peeling-ballooning modes very sensitive to pressure (JBS ~ ∇p)



Can stochastic field line transport explain the reduction
in edge pressure gradient?

• Even-parity RMP induces magnetic diffusion and fractal structure in the
edge stochastic layer

• Color = # toroidal transits for escape yellow=200 max black<10



I-coil n = 3 even parity   targets edge q~3-4
internal RWM control coil  high stochasticity

• Even parity produces strong resonant spectrum δBn=mq ~ 6.0 G
• Edge pressure gradient strongly reduced
• Type-I ELMs can be completely eliminated within q95 window (3.4-3.7)



I-coil n = 3 odd parity  targets edge q~3-4
internal RWM control coil   low stochasticity

• Odd parity produces weak resonant spectrum δBm=qn ~ 0.8 G
• Edge pressure gradient only weakly affected
• Can find regimes that reduce ELM size (grassy/Type-II?)



TRIP3D perturbation spectrum demonstrates that
I-coil parity controls pedestal island overlap

Vacuum calculations suggest:
– Odd (weak RMP) → small islands
– Even (strong RMP) → stochastic

Experiments show:
→ little/no change in pedestal
→ pedestal profile stabilization



E3D Braginskii fluid transport code specialized for
stochastic 3D fields: TEXTOR-DED, W7-X, DIII-D RMP

Assumes anomalous ⊥ transport in static background field

• Energy equation:  (only energy equations used in this study)

• Parallel momentum

• Quasineutral continuity

• Nonlinear sheath BC’s (R. Chodura)
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E3D uses Monte-Carlo fluid elements in order to achieve
high accuracy field line mapping
• Heat transport highly anisotropic

• Stochasticity can generate small scales

• Simple finite elements cannot
   capture anisotropy

• Solution: Monte-Carlo technique
– Let T(x,t) = p.d.f. for heat packets
– Evolve using Brownian motion

• Uses a series of local magnetic coordinate systems to globally
cover space.  Reduces costly field line integration to a series of
mappings between local domains.
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E3D Results: 1D density and diffusivity chosen to match
experimental  measurements and transport analyses

• Which aspects of RMP critically impact the solution?
• What determines the pattern of heat flow?
• Is there still a SOL?
• How is the plasma-wetted target affected?



The RMP splits the separatrix into a “homoclinic tangle”
homoclinic = separatrix formed from self-intersecting orbits

X X 2 unstable branches
enter the X-point

as φ→−∞

2 stable branches
enter the X-point

as φ→∞

What happens to the X-point?

• The periodic orbit at the X-point
deforms, but generically survives.

• The invariant manifolds B⋅∇ψ(x) = 0
that asymptotically approach the X-point
survive as well, but …

• The stable and unstable branches no longer coincide.  As they return to the X-point,
they begin to oscillate wildly & intersect infinitely often.

• The homoclinic tangle is the union of the 4 branches of invariant manifolds.
• The tangle encodes the structure of chaos: field lines cannot cross an invariant

manifold, they are forced to follow the tangle



The 2 upper invariant manifolds determine which field lines
exit the plasma and where they strike the divertor targets

• The invariant manifolds trap interior field lines as they attempt to escape
• All of these field lines escape through the non-axisymmetric divertor legs
• Color = # toroidal transits for escape (red=200 max, blue<=20)

Backward
Escape

Upper
“Stable”
manifold

Forward
escape

Upper
“Unstable”
manifold

Te follows
both!+ =

123301 3000 ms



E3D simulations show that the 2 upper invariant
manifolds efficiently guide heat flux  to the target

• Tangle border defines SOL region: LK<Lc and footprint structure
• Private flux region still exists due to short divertor connection length

Backward
Escape

Forward
escape

Te follows
both!



The predicted tangle forms non-axisymmetric magnetic
footprints  which have been experimentally observed

• Te reflects a superposition of both upper invariant manifolds
• Multiple footprint stripes observed during I-coil operation

123301: filtered Dα Xpt-TV

123300: filtered CIII Xpt-TV



The magnetic footprint can be used to validate the TRIP3D
magnetic field model
Xpt-TV: filtered Dα TRIP3D ISP: field lines

• Field-errors destroy n = 3 symmetry & verify non-axisymmetric structure
– Only 1 strike point observable at 60o IR-TV, but 3 stripes observable near 180o Xpt-TV

• Axisymmetric striations would indicate rotating MHD/tearing activity

E3D ISP: heat flux



Detailed footprint captured via hi-res simulation
and strike point sweep of Langmuir probe array

E3D simulation 6MW

• High resolution E3D thermal footprint qualitatively matches measured fluxes
• Quantitative treatment requires particle continuity, neutrals, etc.
• New poloidal mesh efficiently distributes resolution near divertor

LPA Jsat at  φDIII-D=180o

125912 3200-3800 ms

q95=3.55



q95=3.55

Due to drifts?

Plasma wetted surface area predicted to increase:
peak heat flux reduced at fixed input power

LPA: 125912 3200-3800 ms

• Qualitative agreement looks promising, quantitative agreement?
• Toroidal rotation  linearly decreasing toroidally averaged profile
• Extra bump in private flux zone? Parallel flow? Drift effects?
• Proper in-out asymmetry will probably require asymmetric Danom

E3D:122342 4650

2D Axi
symmetric

3D RMP



Tangle predicted to grow & heat with RMP strength
122342 at 4650 ms BC’s: Te= 1.6 keV, Ti= 2.6 keV at ψn = 77%

! 

D" = 0.2m
2
/ s nsep = 4 #10

18
m

$3

Te (eV): 50     100              150      200

I-coil (kA):         0 (2D)               1                      2            3



Pedestal Te and Ti predicted to cool with RMP strength
122342 at 4650 ms BC’s: Te= 1.6 keV,  Ti= 2.6 keV at ψn = 77%

• Constant temperature BC’s
• Edge stochastic layer efficiently cools pedestal

– remains hot compared to SOL
– disagrees with experimental results

Te
Ti



But RMP controls peeling-ballooning stability through
particle transport!  ne decreases, not Te or Ti



Conclusions

• RMP scenario is a very promising ELM control candidate

• Non-axisymmetric thermal footprints predicted by TRIP3D/E3D
has been qualitatively confirmed
– Strike-point splitting observed on infrared/optical cameras and high-

resolution Langmuir probe array sweeps
– Thermal footprints are guided by the invariant manifolds of the

magnetic field line motion
– Plasma-wetted surface area predicted to increase in size and reduce

peak heat fluxes and particle loads

• Predicted thermal conduction too large to match plasma profile
reconstructions … more physics needed?
– Collisionless kinetic parallel transport may limit conductive fluxes
– Plasma rotation should act to shield RMPs from the core

requires modeling field penetration physics
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