Experimental study on nonlocal electron heat transport in LHD

Transient Response Analysis

CORE-CORE

(p_=p_=0.19)

CORE-EDGE

EDGE-EDGE

30

(p_=p_=0.61)

10

Reduction of normalized heat

takes place in a wider region

flux due to nonlocal effect

20

 τ (ms)

- ρ, **=0.19**

0_ρ_=0.61

Corr $(\delta q_e/n_e(\rho_1,t), -\delta \nabla T_e(\rho_2,t+\tau))$

 Transient analysis suggests strong coupling between the core and the edge

✓ Heat flux perturbation
$$\delta q_e(r,t) = -\frac{1}{r} \int_{0}^{r} \frac{3}{2} n_e \frac{\partial \delta T_e(r,t)}{\partial t} \rho d\rho$$

- Complex relationship between heat flux and T_e gradient
- \checkmark Reduction of $\delta q_{a}/n_{a}$ is not accompanied by changes in local ∇T_{a}
 - Evidence against "standard transport theory" (local & diffusive)
- \checkmark Turn-back of $\delta q_e/n_e$ is also independent of local ∇T_e

- \checkmark Strong negative correlation between the edge $\delta \nabla T_{e}$ and the core $\delta q_{e}/n_{e}$ is obtained
 - The region with strong negative correlation appears around $\rho \sim 0.6$

- How can we understand nonlocal T_e rise in LHD?
- ✓ Clue from LHD experiment
 - 1. Nonlocality in e-transport revealed by edge cooling

- Physical mechanisms of not only transition between "nonlocal" and "local" also nonlocality itself are unclear
- ✓ However, that of nonlocality should have characteristics as follows:
 - Response delayed with higher v_b* & longer T_a gradient scale length
 - Radial extent close to plasma minor radius, a

Notepad