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Summary

v New aspects of nonlocal T, rise from LHD
® Observation in net-current free plasma
® Time response of nonlocal T, rise can take on a variety of forms
v" Time response of core T, rise is quicken by larger edge perturbation
(shorter T, gradient scale length?)
v" Delay of nonlocal T, rise increased with...
® increase in collisionality in the core
® increase in T, gradient scale length at the edge
v" Nonlocal rise of T, as well as T, has been observed after rapid edge cooling
v Transient response analysis for electron heat transport suggests
® strong coupling between the edge and the core
® complex relationship between flux and gradient
® transitions between “nonlocal” and “local”

Motivation

v Full understanding of electron heat transport is necessary for achieving
a good predictive capability for burning plasmas
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¢ Significant rise of core T, in response to edge cooling in LHD
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¢ What plasma can have a nonlocal T, rise?

Nonlocal T, rise in CERC plasma

Nonlocal T, rise observed in... e o e




Characteristics of nonlocal T, rise in LHD (I1)

¢ Condition for nonlocal T, rise B
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Stronger edge cooling

Larger dT./dt T, rise delayed
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© Dependence of delay time
v/ Favorable condition for delay of nonlocal T, rise
® Higher collisionality v, * in the core
® Longer T, gradient scale length at the edge
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v Repetitive hydrogen pellet injection §2
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Ti response to nonlocal T, rise

v High time-resolved (2.5ms) charge exchange spectroscopy system allows
us to measure a Ti response to nonlocal T, rise
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v Plasma is heated with NBI (n-NBI 3.6 MW +
p-NBI 5.4 MW) and ECH (0.3 MW)
- ® T./T, seems to be still larger than unity

17 18 v TESPEL (doubled accidentally) is deposited
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® At p ~ 0.7, increment of T, is slightly larger than that
@ not just e-i collisional coupling

v"No change in V,, is seen

v  Tiis increased nanlocally as well as T, after rapid g




v’ Transient analysis suggests strong coupling
between the core and the edge
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Transient Response Analysis

v Strong negative correlation between the edge 8VT, and the core 89./n, is
obtained
® The region with strong negative correlation appears around p ~ 0.6
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¢ Complex relationship between heat flux and T, gradient
v Reduction of 3g./n, is not accompanied by changes

in local VT,

® Evidence against “standard transport theory”

(local & diffusive)

v Turn-back of 5g./n, is also independent of local VT,
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v Reduction of normalized heat
flux due to nonlocal effect
takes place in a wider region 2. Transitions between “nonlocal” and

P,

¢ How can we understand nonlocal T, rise in LHD?
v'Clue from LHD experiment

1. Nonlocality in e-transport revealed by edge cooling

“local” in e-transport also revealed
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