Summary

- New aspects of nonlocal \(T_e \) rise from LHD
 - Observation in net-current free plasma
 - Time response of nonlocal \(T_e \) rise can take on a variety of forms
 - Time response of core \(T_e \) rise is quickened by larger edge perturbation (shorter \(T_e \) gradient scale length?)
 - Delay of nonlocal \(T_e \) rise increased with...
 - Increase in collisionality in the core
 - Increase in \(T_e \) gradient scale length at the edge
 - Nonlocal rise of \(T_i \) as well as \(T_e \) has been observed after rapid edge cooling
 - Transient response analysis for electron heat transport suggests
 - Strong coupling between the edge and the core
 - Complex relationship between flux and gradient
 - Transitions between “nonlocal” and “local”

Characteristics of nonlocal \(T_e \) rise in LHD (I)

- **Significant rise of core \(T_e \) in response to edge cooling in LHD**
 - Edge cooling experiment of LHD shows a significant rise of core \(T_e \)
 - No change in low-\(m \) MHD modes
 - No density peaking like PEP, RI-mode
 - Electron heating dominates (\(T_e/T_i > 1 \))
 - Difference between \(T_e \) measured and that simulated based on simple diffusion model is pronounced in the core (\(\rho < 0.6 \)) little at the edge (\(\rho > 0.6 \))

- **What plasma can have a nonlocal \(T_e \) rise?**
 - Nonlocal \(T_e \) rise observed in...
 - ECH plasma (i.e. net-current free plasma)
 - Toroidal plasma current and high-energy ion are not a factor
 - NBI plasma (still \(T_e/T_i > 1 \))
 - High-energy electron is also not a factor
 - CERC plasma
 - Even inside transport improved region, \(T_e \) rise appears
 - \(\Rightarrow \) High heat flux required!

Motivation

- Full understanding of electron heat transport is necessary for achieving a good predictive capability for burning plasmas
- Experiments on toroidal plasmas show nonlocality
 \[q_e(\rho_1) = f(\nabla T_e(\rho_1), \nabla T_e(\rho_1 - \delta \rho), \nabla T_e(\rho_1 + \delta \rho), \ldots, T_e(\rho_1), T_e(\rho_1 - \delta \rho), \ldots) \]
 in electron heat transport

- Profile resilience
- Fast plasma response (non-diffusive, ballistic)
- Phase inversion of cold pulse polarity

- Possible theoretical interpretation is “nonlocality” in turbulence (e.g. turbulence spreading)
- Observations in LHD heliotron give new insight into nonlocal transport
 - Because LHD has
 - Different magnetic configuration (normally negative magnetic shear)
 - No tokamak-like stiffness in \(T_e \) profile

Experimental study on nonlocal electron heat transport in LHD

N. Tamura\(^1\) (ntamura@LHD.nifs.ac.jp), S. Inagaki\(^2\), K. Tanaka\(^1\), C. Michael\(^1\), T. Tokuzawa\(^1\), K. Ida\(^1\), M. Yoshinuma\(^1\), T. Shimozuma\(^1\), S. Kubo\(^1\), R. Sakamoto\(^1\), T. Fukuda\(^3\), K. Itoh\(^1\), Y. Nagayama\(^1\), K. Kawahata\(^1\), S. Sudo\(^1\), A. Komori\(^1\) and LHD team\(^1\)

\(^1\)National Institute for Fusion Science, \(^2\)Kyushu University, \(^3\)Osaka University
Characteristics of nonlocal T_e rise in LHD (II)

- **Condition for nonlocal T_e rise**
 - Inverse relationship between increment of core T_e due to nonlocal effect and n_e observed
 - Same as in tokamaks
 - In LHD, no differences among heating methods (however, almost electron heating is dominant)

- **Variety of time response**
 - Repetitive hydrogen pellet injection shows clearly heat flux dependence of nonlocal T_e rise, also no impurity effect

- **Dependence of delay time**
 - Favorable condition for delay of nonlocal T_e rise
 - Higher collisionality ν_T^* in the core
 - Longer T_e gradient scale length at the edge
 - Plasma is heated with NBI (n-NBI 3.6 MW + p-NBI 5.4 MW) and ECH (0.3 MW)
 - T_e/T_i seems to be still larger than unity
 - TESPEL (doubled accidentally) is deposited outside $\rho \sim 0.9$
 - Ti is increased nonlocally as well as T_e after rapid edge cooling
 - At $\rho \sim 0.7$, increment of T_i is slightly larger than that of T_e
 - not just e-i collisional coupling
 - No change in V_p is seen

Ti response to nonlocal T_e rise

- High time-resolved (2.5ms) charge exchange spectroscopy system allows us to measure a Ti response to nonlocal T_e rise
Transient Analysis

- Transient analysis suggests strong coupling between the core and the edge.

- Heat flux perturbation: $\delta q_e(r, t) = -\frac{3}{2} n_e \frac{\partial T_e(r, t)}{\partial t} \rho d\rho$

- Strong negative correlation between the edge $\delta V T_e$ and the core $\delta q_e/n_e$ is obtained.
 - The region with strong negative correlation appears around $\rho \sim 0.6$.

- Complex relationship between heat flux and T_e gradient:
 - Reduction of $\delta q_e/n_e$ is not accompanied by changes in local ∇T_e.
 - Evidence against "standard transport theory" (local & diffusive).
 - Turn-back of $\delta q_e/n_e$ is also independent of local ∇T_e.

- How can we understand nonlocal T_e rise in LHD?
 - Reduction of normalized heat flux due to nonlocal effect takes place in a wider region.

- Clue from LHD experiment:
 1. Nonlocality in e-transport revealed by edge cooling.
 2. Transitions between "nonlocal" and "local" in e-transport also revealed.

- Physical mechanisms of not only transition between "nonlocal" and "local" also nonlocality itself are unclear.

- However, that of nonlocality should have characteristics as follows:
 - Response delayed with higher v_b^* & longer T_e gradient scale length.
 - Radial extent close to plasma minor radius, a.