Effects of Toroidal Rotation on Hybrid Scenario Plasmas

P.A. Politzer

with

C.C. Petty¹, R.J. Jayakumar², T.C. Luce¹, M.R. Wade¹, J.C. DeBoo¹, J.R. Ferron¹, P. Gohil¹, C.T. Holcomb², A.W. Hyatt¹, J. Kinsey³, R.J. La Haye¹, M.A. Makowski², and T.W. Petrie¹ ¹ GA; ² LLNL; ³ Lehigh U.

12th US-EU Transport Task Force Workshop 17-20 April 2007 San Diego

The ITER hybrid scenario and hybrid plasmas:

ITER definition:

An advanced (better than standard H-mode) scenario; long pulse inductive, with "substantial" noninductive current drive; producing high neutron fluence.

Intermediate in performance between standard H-mode and AT steady-state noninductive scenarios.

There is no more precise definition.

(You know it when you see it.)

DIII-D hybrid plasmas:

- ★ bootstrap fraction ~ 0.3-0.5 q0 ~ 1 completely relaxed, stationary profiles (J, n_e, T_e, T_i, V_φ)
- ★ broader current profile than standard H-mode
 - \Rightarrow less susceptible to m/n = 2/1 NTM
 - \Rightarrow higher β
 - reduce or eliminate sawteeth
 - \Rightarrow better confinement
 - \Rightarrow remove trigger for 2/1 NTM
- modified current profile is definitely due to presence of stationary MHD activity – almost always a 3/2 NTM; no definitive identification of mechanism
- hybrids have excellent confinement possibly due to combined effects of better rotation profile and better q profile.

Toroidal rotation effects:

- Most of the tokamak experience base is limited to plasmas with strong toroidal rotation (thanks to NB heating).
- There is significant concern that ITER (& DEMO & reactors) will have low rotation.
- And that low rotation reduces ExB shear, increasing turbulence levels and the resulting transport.
- \diamond And that low rotation may reduce the β thresholds for NTMs and RWMs.

DIII-D experiments:

Use the recently (2005) modified NB configuration (2 of 7 NB sources in the counter direction) to study the effect of rotation on the performance of hybrid plasmas.

Summary of observations:

We performed systematic scans of rotation at several values of density and q95

* Central Mach number has been reduced by up to a factor of 5, to $M_0 \approx 0.1$, maintaining stationary conditions.

* Confinement is reduced.

→ Fusion performance parameter G (= $\beta_N H_{89}/q_{95}^2$) is reduced by 10-30%, but remains above ITER level for $Q_{fus} = 10$ operation at low q_{95} . I.e., The overall performance drops from "excellent" to "very good".

* 3/2 NTM island width increases

with a noticable but minor effect on confinement.

* Primary confinement effect appears to be via reduction of ExB flow shear.

Outline:

- → Examine the changes in properties of a single discharge when the input torque is reduced.
- Briefly look at the relationship between torque and angular momentum.
- Examine the changes in confinement and MHD behavior as a function of angular momentum.

12th TTF (18Apr07) – Politzer – 7/18

12th TTF (18Apr07) – Politzer – 8/18

Reducing torque by factor ~3 reduces rotation by a similar factor and leads to large reduction in ExB flow shear at mid-radius.

12th TTF (18Apr07) – Politzer – 9/18

Density and temperature profiles change little (both β_N and \overline{n}_e are controlled).

12th TTF (18Apr07) – Politzer – 10/18

Current and q profiles change very little $(J_{NBCD}$ is a small fraction of the total current).

12th TTF (18Apr07) – Politzer – 11/18

Angular momentum is proportional to torque, except for some indication of inherent rotation at low torque.

Mach number is proportional to angular momentum, except near edge, where $v_{\varphi} \rightarrow 0$ at finite total angular momentum. (Related to locking?)

12th TTF (18Apr07) – Politzer – 14/18

GLF23: ExB shear flow is needed to match Te and Ti profiles at high rotation, but not at low rotation.

⇒ change in ExB flow shear is responsible for most of confinement change.

12th TTF (18Apr07) – Politzer – 16/18

Summary of observations:

We performed systematic scans of rotation at several values of density and q95

* Central Mach number has been reduced by up to a factor of 5, to $M_0 \approx 0.1$, maintaining stationary conditions.

* Confinement is reduced.

→ Fusion performance parameter G (= $\beta_N H_{89}/q_{95}^2$) is reduced by 10-30%, but remains above ITER level for $Q_{fus} = 10$ operation at low q_{95} . I.e., The overall performance drops from "excellent" to "very good".

* 3/2 NTM island width increases

with a noticable but minor effect on confinement.

* Primary confinement effect appears to be via reduction of ExB flow shear.

