Effects of Toroidal Rotation on Hybrid Scenario Plasmas

P.A. Politzer

with
C.C. Petty1, R.J. Jayakumar2, T.C. Luce1, M.R. Wade1, J.C. DeBoo1, J.R. Ferron1, P. Gohil1, C.T. Holcomb2, A.W. Hyatt1, J. Kinsey3, R.J. La Haye1, M.A. Makowski2, and T.W. Petrie1

1 GA; 2 LLNL; 3 Lehigh U.

12th US-EU Transport Task Force Workshop
17-20 April 2007
San Diego
The ITER hybrid scenario and hybrid plasmas:

ITER definition:
An advanced (better than standard H-mode) scenario;
long pulse inductive, with “substantial” noninductive current drive;
producing high neutron fluence.
Intermediate in performance between standard H-mode and AT steady-state noninductive scenarios.

There is no more precise definition.
(You know it when you see it.)
DIII-D hybrid plasmas:

- bootstrap fraction ~ 0.3-0.5
 - \(q_0 \approx 1 \)
 - completely relaxed, stationary profiles (\(J, n_e, T_e, T_i, V_\phi \))

- broader current profile than standard H-mode
 - \(\Rightarrow \) less susceptible to \(m/n = 2/1 \) NTM
 - \(\Rightarrow \) higher \(\beta \)
 - reduce or eliminate sawteeth
 - \(\Rightarrow \) better confinement
 - \(\Rightarrow \) remove trigger for 2/1 NTM

- modified current profile is definitely due to presence of stationary MHD activity – almost always a 3/2 NTM;
 - no definitive identification of mechanism

- hybrids have excellent confinement
 - possibly due to combined effects of better rotation profile and better \(q \) profile.
Toroidal rotation effects:

✧ Most of the tokamak experience base is limited to plasmas with strong toroidal rotation (thanks to NB heating).

✧ There is significant concern that ITER (& DEMO & reactors) will have low rotation.

✧ And that low rotation reduces ExB shear, increasing turbulence levels and the resulting transport.

✧ And that low rotation may reduce the β thresholds for NTMs and RWMs.

DIII-D experiments:

Use the recently (2005) modified NB configuration (2 of 7 NB sources in the counter direction) to study the effect of rotation on the performance of hybrid plasmas.
Summary of observations:

We performed systematic scans of rotation at several values of density and q95

- Central Mach number has been reduced by up to a factor of 5, to $M_0 \approx 0.1$, maintaining stationary conditions.

- Confinement is reduced.
 - Fusion performance parameter $G (= \beta N H_{89}/q_{95}^2)$ is reduced by 10-30%, but remains above ITER level for $Q_{fus} = 10$ operation at low q_{95}. I.e., The overall performance drops from “excellent” to “very good”.

- 3/2 NTM island width increases with a noticable but minor effect on confinement.

- Primary confinement effect appears to be via reduction of ExB flow shear.
Outline:

➔ Examine the changes in properties of a single discharge when the input torque is reduced.

➔ Briefly look at the relationship between torque and angular momentum.

➔ Examine the changes in confinement and MHD behavior as a function of angular momentum.
begin dominant n=2
begin dominant n=3
begin ELMs, NTMs
turn on 2 counter beams

Ip (MA)
P_nb (MW)
P_rad (MW)
neutrons (10^{15}/s)
\langle n_e \rangle (10^{20}/m^3)
n_e(0) (10^{20}/m^3)
T_e(0) (keV)
T_i(0) (keV)
V_\phi(0) (km/s)
M_\phi(0)
\beta_N
\beta_p
\ell_i
H_{89p}
D_\alpha
q_0–q_{min}
\tilde{B}_{n=1,rms} (G)
\tilde{B}_{n=2,rms} (G)
\tilde{B}_{n=3,rms} (G)
f_{n=2,rms} (kHz)
V_{surf} (V)
t (s)
125499
q_0–q_{min}
gas rate (arb)
integrated gas (arb)
drsep (m)

12th TTF (18Apr07) – Politzer – 7/18
turn on 2 counter beams

begin dominant n=2

begin dominant n=3

begin ELMs, NTMs

Ip (MA)

P_{nb} (MW)

D_\alpha

M_\phi (0)

B_{n=2,\text{rms}} (G)

B_{n=3,\text{rms}} (G)

f_{n=2,\text{rms}} (kHz)

H_{89P}
Reducing torque by factor ~ 3 reduces rotation by a similar factor and leads to large reduction in ExB flow shear at mid-radius.
Density and temperature profiles change little (both β_N and \bar{n}_e are controlled).
Current and q profiles change very little (J_{NBCD} is a small fraction of the total current).
Angular momentum is proportional to torque, except for some indication of inherent rotation at low torque.
\[\tau_\Omega \approx \tau_E, \text{ except for very low torque points} \]
Mach number is proportional to angular momentum, except near edge, where $v_\phi \rightarrow 0$ at finite total angular momentum. (Related to locking?)
Three ways of looking at confinement as a function of angular momentum.
GLF23: ExB shear flow is needed to match Te and Ti profiles at high rotation, but not at low rotation. ⇒ change in ExB flow shear is responsible for most of confinement change.
Change (increase) in NTM island width accounts for an ~5% change in τ_E. Small compared to ~30% overall reduction.
Summary of observations:

We performed systematic scans of rotation at several values of density and q95

* Central Mach number has been reduced by up to a factor of 5, to $M_0 \approx 0.1$, maintaining stationary conditions.

* Confinement is reduced.
 → Fusion performance parameter $G (= \beta_N H_{89}/q_{95}^2)$ is reduced by 10-30%, but remains above ITER level for $Q_{fus} = 10$ operation at low q_{95}. I.e., The overall performance drops from “excellent” to “very good”.

* 3/2 NTM island width increases
 with a noticeable but minor effect on confinement.

* Primary confinement effect appears to be via reduction of ExB flow shear.