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Recent Experimental Observations on DIII-D

• No magnetic signal detected at ITB formation
• Corrugations centered around

profile event, i.e.
– steepening before and after

– flattening at 

(Austin et. al. ‘06)
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• GYRO simulations (Waltz, et. al ‘06):
– exhibit profile ‘corrugations’ at q-resonance
– indicate “zonal flows” correlated with corrugation

structure
– suggest zonal flows as ITB trigger



Critical Issues

• Zonal flow hypothesis forces the question:
• Why are zonal flows linked to resonant-q surfaces?
• Answer must address coexistence of:

1. region of profile flattening at resonant surface
• region of localized mixing, transport

2. barrier formation nearby resonance
• neighboring region of strong shear flow

• In particular, spatial profile of turbulence critical to shear flow 
generation

→ Necessary to understand response of turbulence to appearance of 
low-q surface



Secondary Convective Cell

• Finite-m analogue of zonal flow
– Describes localized electrostatic convective cell excited by ambient 

background turbulence
– Damped by synergism between collisional damping and resistive field 

line bending
– , hence convective cell introduces strong mixing near resonance

→provides robust mechanism for shaping mean profiles
• Excitation of cell linked to appearance of low-q rational surfaces

– Most unstable in regions of weak magnetic shear
• Hence provides natural means of linking trigger of ITBs to off-axis 

low-q surfaces
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Basic Equations I

• Minimal description requires two components
a.) Dynamical model for large scales

– Gyrokinetics provides useful framework for describing evolution of 
convective cell

– Separating fields into mean and fluctuating components:
• Electrostatic gyrokinetic equation is given by

• Here mean field nonlinearity subdominant to stresses exerted by 
small scales

Small Scale stresses Collisions



Basic Equations II

• Considering weak magnetic shear and 
– To first order in        , vorticity equation may easily be derived from 

gyrokinetic equation:

b.) Small scale evolution
• Wave kinetics provides convenient framework for treating evolution of 

small scales
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Excitation Threshold I

• Two scale analysis + wave kinetics for drift wave turbulence yields:

• Drive -> ‘negative viscosity’ from modulational instability

• Damping -> friction, collisional damping
• Localization -> field line bending <-> magnetic shear, non-

axisymmetric component



Excitation Threshold II
• Eigenvalue provides estimate for fluctuation intensity threshold to 

excite cell

• Notice that magnetic shear & collisional viscosity work in synergy
– strong magnetic shear forces vortex to be strongly localized in space
– thinner cell more strongly damped by collisional viscosity (note scale 

dependence in turbulent viscosity)
• For weak magnetic shear, saturation asymptotes to that found 

previously for zonal flows
– Cell most important in regions of weak magnetic shear

frictional damping magnetic shearing
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Cell Structure

• Neglecting the scale separation for simplicity, a simple asymptotic 
form in real space can be written as:

• Note the intensity of the shear flow scales as:

• Shearing strongest away from       
resonant surface,    

• Vortex satisfies dual criteria of:
– strong mixing near resonant  

surface
– peak of shearing adjacent to  

rational surface
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Power Threshold

• Saturation criteria can be understood to correspond to the critical 
intensity of turbulence necessary to excite cell

• Thus, power threshold can be easily derived via power balance, i.e.

• Where a simple standard model for ITG turbulence has been used 
(Romanelli, ‘88)

• The power threshold is then given by

• Where the notation is standard, and

• Clearly, the power threshold increases for stronger friction, viscosity, 
and decreases for weaker magnetic shear



Nonlinear Evolution I

• Finite amplitude flow capable 
of “trapping” wave quanta 
(driftons) in maximum of shear 
flow

• Trapped driftons undergo 
closed orbits in phase space
– nonlinear transfer of energy to 

shear flow pattern quenched! 
(Kaw et. al. ‘02)

• Integrability of system made 
possible by two integrals of 
motion (considering cross-
section of torus):
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Nonlinear Evolution II

• Non-axisymmetric component of 
convective cell removes     as 
integral of motion
– Integrable orbits vanish
– Replaced with stochastic motion

• Ray chaos prevents cell 
saturation by ray trapping

• Nonlinear wave trapping 
circumvented as nonlinear cell 
saturation mechanism!

• Result may be easily extended 
to generalized non-axisymmetric
flow structures

• Stochasticity induced by 
breaking of axisymmetry similar 
to Tokamak->Stellarator
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Conclusion

• Electrostatic convective cells likely to play strong for ITB 
transition in minimum-q profiles

• Cell formation satisfies:
– profile flattening or “corrugation” at the resonant surface
– barrier formation nearby the rational surface

• Non-axisymmetric component of convective cell allow 
nonlinear wave trapping to be circumvented
– relevant for Reynolds stress driven flows with non-vanishing 

mean 


