Low-q Resonances, Transport Barriers, and Secondary Electrostatic Cells

C.J. McDevitt and P.H. Diamond

Center for Astrophysics and Space Sciences and Department of Physics, University of California at San Diego, La Jolla, CA 92093-0424

Recent Experimental Observations on DIII-D

- No magnetic signal detected at ITB formation
- Corrugations centered around ∇T_e

profile event, i.e.

- steepening before and after

$$q_{\min} = 2$$

- flattening at $q_{\min} = 2$
- GYRO simulations (Waltz, et. al '06):
 - exhibit profile 'corrugations' at q-resonance
 - indicate "zonal flows" correlated with corrugation structure
 - suggest zonal flows as ITB trigger

Critical Issues

- Zonal flow hypothesis forces the question:
- Why are zonal flows linked to resonant-q surfaces?
- Answer must address coexistence of:
 - 1. region of profile flattening at resonant surface
 - region of localized mixing, transport
 - 2. barrier formation nearby resonance
 - neighboring region of strong shear flow
- In particular, spatial profile of turbulence critical to shear flow generation
 - → Necessary to understand response of turbulence to appearance of low-q surface

Secondary Convective Cell

- Finite-m analogue of zonal flow
 - Describes localized electrostatic convective cell excited by ambient background turbulence
 - Damped by synergism between collisional damping and resistive field line bending
 - − $v_r \neq 0$, hence convective cell introduces strong mixing near resonance →provides robust mechanism for shaping mean profiles
- Excitation of cell linked to appearance of low-q rational surfaces
 - Most unstable in regions of weak magnetic shear
- Hence provides natural means of linking trigger of ITBs to off-axis low-q surfaces

Basic Equations I

- Minimal description requires two components
- a.) Dynamical model for large scales
 - Gyrokinetics provides useful framework for describing evolution of convective cell
 - Separating fields into mean and fluctuating components: $\psi = \bar{\psi} + \bar{\psi}$
- Electrostatic gyrokinetic equation is given by

$$\frac{\partial \bar{f}_i}{\partial t} + U\hat{b} \cdot \nabla \bar{f}_i = J_0(\lambda) \left\{ -\frac{c}{B}\hat{b} \times \nabla \bar{\phi} \cdot \nabla F_{0i} + \frac{e}{m_i}\hat{b} \cdot \nabla \bar{\phi} \frac{\partial F_{0i}}{\partial U} \right\} - \left\langle \frac{c}{B}\hat{b} \times J_0(\lambda) \nabla \tilde{\phi} \cdot \nabla \tilde{f}_i \right\rangle + C(f_i)$$
Small Scale stresses Collisions

 Here mean field nonlinearity subdominant to stresses exerted by small scales

Basic Equations II

- Considering weak magnetic shear and $k_{\perp}\rho_s < 1$
 - To first order in $k_{\perp}^2 \rho_s^2$, vorticity equation may easily be derived from gyrokinetic equation:

$$\left(\frac{\partial}{\partial t} + \gamma_d - \nu_c \nabla_{\perp}^2\right) \nabla_{\perp}^2 \bar{\phi} = -\frac{v_A^2}{\eta} \left(1 - i\frac{\omega_d^*}{\omega}\right) \nabla_{\parallel}^2 \bar{\phi} - \omega_d^* \nabla_{\perp}^2 \bar{\phi} - \frac{c}{B} \left\langle \hat{b} \times \nabla \tilde{\phi} \cdot \nabla \nabla_{\perp}^2 \tilde{\phi} \right\rangle$$

- b.) Small scale evolution
- Wave kinetics provides convenient framework for treating evolution of small scales

$$\frac{\partial \langle N \rangle}{\partial t} = \frac{\partial}{\partial k_x} \left(D_k \frac{\partial \langle N \rangle}{\partial k_x} \right) + \frac{\partial}{\partial x} \left(D_x \frac{\partial \langle N \rangle}{\partial x} \right) + \gamma_k \langle N \rangle - \Delta \omega_k \langle N \rangle^2$$
$$D_k = k_y^2 \sum_q R \left(k, q \right) q_x^4 \left| \phi_q \right|^2, \qquad D_x = \sum_q R \left(k, q \right) q_y^2 \left| \phi_q \right|^2$$

Excitation Threshold I

• Two scale analysis + wave kinetics for drift wave turbulence yields:

$$\frac{v_A^2 q_y^2}{\eta L_s^2} \left(1 - i \frac{\omega_d^*}{\omega} \right) \frac{d^2 \phi_q}{dq_x^2} = \left\{ \left[\nu_c + \nu_T \left(q_x \right) \right] q_x^2 + \left[\gamma_d - i \left(\omega - \omega_d^* \right) \right] \right\} q_x^2 \phi_q$$
$$\nu_T = c_s^2 \sum_k R\left(k, q \right) \frac{\rho_s^2 k_y^2}{\left(1 + \rho_s^2 k_\perp^2 \right)^2} k_x \frac{\partial \left\langle N \right\rangle}{\partial k_x}$$

- Drive -> 'negative viscosity' from modulational instability
- Damping -> friction, collisional damping
- Localization -> field line bending <-> magnetic shear, nonaxisymmetric component

$$v_T(q_x) < 0$$
 for $\frac{\partial \langle N \rangle}{\partial k_x} < 0$

Excitation Threshold II

Eigenvalue provides estimate for fluctuation intensity threshold to excite cell

frictional damping magnetic shearing

$$N \approx \Gamma + \left(\frac{\frac{3\pi}{2} + \delta}{1 - \epsilon}\right)^{2/3} \frac{\nu_c^{2/3}}{\eta^{1/3}} \left(\frac{v_A q_y}{L_s}\right)^{2/3} \frac{1}{\gamma_k}$$

$$\epsilon \equiv \frac{3}{4} \alpha \left(\ln \left(\frac{16}{\alpha}\right) - \frac{N - 2\Gamma}{N - \Gamma} \right), \quad \alpha \equiv \frac{1}{4} \frac{N}{(N - \Gamma)^2} \hat{\nu}_c$$

- Notice that magnetic shear & collisional viscosity work in synergy
 - strong magnetic shear forces vortex to be strongly localized in space
 - thinner cell more strongly damped by collisional viscosity (note scale dependence in turbulent viscosity)
- For weak magnetic shear, saturation asymptotes to that found previously for zonal flows
 - Cell most important in regions of weak magnetic shear

Cell Structure

 Neglecting the scale separation for simplicity, a simple asymptotic form in real space can be written as:

$$\phi\left(x\right) \sim \frac{1}{x^{3/4}} \exp\left(i\frac{2}{3}\left(\frac{x}{\Delta x}\right)^{3/2}\right)$$

• Note the intensity of the shear flow scales as:

$$\Delta x \equiv (|\nu_T(0)|\eta)^{1/6} (L_s/(v_A q_y))^{1/3}$$

- Shearing strongest away from resonant surface, $|v'_y| \sim x^{1/4}$
- Vortex satisfies dual criteria of:
 - strong mixing near resonant surface
 - peak of shearing adjacent to rational surface

Power Threshold

- Saturation criteria can be understood to correspond to the critical intensity of turbulence necessary to excite cell
- Thus, power threshold can be easily derived via power balance, i.e.

$$Q_{\rm crit} = -\chi_{\rm crit} \frac{\partial T_i}{\partial r} \approx v_{th} T_i \eta_i \epsilon_T^{-1/2} \tau^2 N_{\rm crit}$$

- Where a simple standard model for ITG turbulence has been used (Romanelli, '88)
- The power threshold is then given by

$$P_{\rm in} \sim Rr_b Q_{\rm crit} \sim Rr_b v_{th} T_i \eta_i \epsilon_T^{-1/2} \tau^2 N_{\rm crit}$$

• Where the notation is standard, and

$$N_{\text{crit}} \approx \Gamma + \left(\frac{\frac{3\pi}{2} + \delta}{1 - \epsilon}\right)^{2/3} \frac{\nu_c^{2/3}}{\eta^{1/3}} \left(\frac{v_A q_y}{L_s}\right)^{2/3} \frac{1}{\gamma_k}$$

 Clearly, the power threshold increases for stronger friction, viscosity, and decreases for weaker magnetic shear

Nonlinear Evolution I

- Finite amplitude flow capable of "trapping" wave quanta (driftons) in maximum of shear flow
- Trapped driftons undergo closed orbits in phase space
 - nonlinear transfer of energy to shear flow pattern quenched! (Kaw et. al. '02)
- Integrability of system made possible by two integrals of motion (considering crosssection of torus):

$$\delta\omega = \omega_k + \vec{v}_0 \cdot \vec{k}, \quad k_{\theta}$$

Nonlinear Evolution II

- Non-axisymmetric component of convective cell removes k_{θ} as integral of motion
 - Integrable orbits vanish
 - Replaced with stochastic motion
- Ray chaos prevents cell saturation by ray trapping
- Nonlinear wave trapping circumvented as nonlinear cell saturation mechanism!
- Result may be easily extended to generalized non-axisymmetric^k_rρ_s flow structures
- Stochasticity induced by breaking of axisymmetry similar to Tokamak->Stellarator

Conclusion

- Electrostatic convective cells likely to play strong for ITB transition in minimum-q profiles
- Cell formation satisfies:
 - profile flattening or "corrugation" at the resonant surface
 - barrier formation nearby the rational surface
- Non-axisymmetric component of convective cell allow nonlinear wave trapping to be circumvented
 - relevant for Reynolds stress driven flows with non-vanishing mean