Plasma Shaping Effects on Driftwave Transport and ExB Shear Quenching in GYRO Simulations

J. Kinsey

in collaboration with R. Waltz, J. Candy General Atomics

12th US-EU Transport Task Force Workshop

April 17–20, 2007 San Diego, CA

A nonlinear simulation database has been created for benchmarking and transport model development

 Over 350 nonlinear gyrokinetic simulations have been performed using the GYRO code

http://fusion.gat.com/theory/gyro

- Systematic scans in R/a, r/a, q, ŝ, α, a/L_n, a/L_τ, ν, β, T_i/T_e, κ, δ, dilution, and ExB shear with and without kinetic electrons (most runs w/ kinetic electrons)
- Simulations around several reference cases: most with \hat{s} - α geometry, electrostatic (except for β scan), and flat profiles across annulus, zero boundary conditions
 - GA Standard Case (STD): R/α=3, r/α=0.5, q=2, s=1, α=0, α/L_T=3, α/L_n=1, T_i/T_e=1, v=0, β=0
 - TEM1 Case: STD w/ $\alpha/L_n=2$, $\alpha/L_T=2$
 - TEM2 Case: STD w/ $\alpha/L_n=3$, $\alpha/L_T=1$
- Miller equilibrium model used for κ and δ scans
- Diffusivities shown are time-averaged values and are normalized to the gyro-Bohm diffusivity, $\chi_{GB}=c_s\rho_s^2/a$

The effects of elongation and triangularity on turbulent transport have been investigated using the Miller equilibrium model in the GYRO code

- Nine parameters are required to describe the local equilibrium using Miller geometry¹: κ (elongation), δ (triangularity), q, \hat{s} (magnetic shear), α (normalized pressure gradient), A=R₀/r, $\partial_r R_0$, along with gradient factors of κ and δ (s_{κ} and s_{δ})
- For D-shaped plasmas, the shape of a flux surface is specified in terms of the major radius R and height Z as a function of the poloidal angle θ :

 $R = R_0 + r \cos[\theta + (\sin^{-1}\delta)\sin\theta]$ $7 = \kappa r \sin\theta$

- Systematic nonlinear scans in κ and δ were performed for the STD case with $\partial_r R_0$ =0, α =0, β =0
 - For κ scans, we also varied $s_{\kappa} = (r/\kappa) \partial_r \kappa \approx (\kappa-1)/\kappa$
 - For δ scans, we also varied $s_{\delta} = (r/(1-\delta^2)^{0.5}) \partial_r \delta \approx \delta/(1-\delta^2)^{0.5}$
 - All other quantities held fixed, including **r**, within κ and δ scans
 - ¹ R. L. Miller, et al, Phys. Plasmas 5, 973 (1998)

Scaling with shape and aspect ratio requires a clear definition of the diffusivity and what is held constant

- Elongation scans performed at fixed midplane minor radius, r, and gradient scale lengths (defined in terms of r)
- Translation of $\hat{\chi}_{GYRO}$ to $\hat{\chi}_{ITER}$ where $\hat{\chi} = \chi / \chi_{GB} = \chi / (c_s \rho_s^2/a)$

 $\chi_{GYRO} = < |\nabla r|^2 > \chi_{ITER}$

For concentric ellipses where "r" is the midplane minor radius:

 $\langle |\nabla r|^2 \rangle = (1+\kappa^2)/(2\kappa^2)$ So, we have $\chi_{\text{ITER}}^{\Lambda} = [2\kappa^2/(1+\kappa^2)] \chi_{\text{GYRO}}^{\Lambda} \chi_{\text{GB}_{\text{Bunit}}}/\chi_{\text{GB}_{\text{B0}}}$ $= [2\kappa^2/(1+\kappa^2)] \chi_{\text{GYRO}} (B_0/B_{\text{unit}})^2$

Where χ_{GB_B0} and χ_{GB_Bunit} are the GB χ 's at fixed B_0 and B_{unit}

We have a κ dependence that enters thru B_{unit} in ρ_{s}

 $B_{\text{unit}}=(\rho/r)(d\rho/dr)B_0\approx\kappa B_0\ \text{since}\ \rho\approx(\kappa)^{0.5}\ r$

Finally, we have

 $\bigwedge_{\text{XITER}} (@\text{fixed B}_0) \approx 2/(1+\kappa^2) \bigwedge_{\text{GYRO}} (@\text{fixed B}_{unit})$

GYRO simulations show elongation stabilizes transport

- Elongation and elongation gradient factor varied around GA STD case
 - Miller geometry w/ kinetic electrons, collisionless, electrostatic

GYRO simulations show the normalized energy diffusivities decreasing linearly with increasing elongation for the STD case

• Linear decrease in transport for κ scan around STD case

Most of elongation scaling in GYRO simulations is from elongation shear rather than local value of elongation

- Elongation varied in GYRO simulations around STD parameters holding all other quantities fixed
- Elongation scan varying κ but with no elongation gradient (s_k) shows that changing the local κ only result in a weak effect on transport
 - Normalized χ_i scales like κ^{-1} if s_{κ} is varied along with κ

Elongation scaling of the energy transport can vary and depends on the wavenumber where the transport peaks

- Elongation scans performed for a variety of safety factors, magnetic shears, and temperature gradients
- Elongation scaling for χ_{e} changes more than χ_{i}
 - Scaling is weaker if χ peaks at low $k_{\theta}\rho_s$ (high drive cases)
 - Scaling stronger when the peak occurs at high $k_{\theta}\rho_s$ (low drive cases)
- Low k modes less sensitive to elongation than higher k modes
- Higher k modes more sensitive to κ and contribute more to χ_{e}

$$\chi_i \propto \kappa^{-1.0+0.14(q-2)+0.33(s-1)+0.14(a/L_T-3)}$$

$$\chi_e \propto \kappa^{-1.4+0.14(q-2)+0.33(s-1)+0.54(a/L_T-3)}$$

GYRO simulations show an upshift in the nonlinear temperature gradient that is insensitive to elongation

- Linear (L) a/L₁^{crit} increases with elongation
- Nonlinear (NL) a/L_T^{crit} also increases with elongation
 - For $\kappa=1.0,$ can't identify a threshold at low a/L_T due to transition from ITG to TEM as a/L_T decreases
 - For $\kappa > 1.0$, a NL threshold is evident but can't discern any change in (a/L_t^{crit,L} a/L_t^{crit,NL})

J. Kinsey - TTF07

Dependence of transport on triangularity weak for κ =1 plasmas, somewhat stronger for elongated plasmas

- δ varied for κ =1.0, 1.5, and 2.0 using STD parameters
 - Miller geometry, delta gradient factor s_δ varied along with δ
- Transport increases with δ for high elongation
 - Stronger dependence for κ =1.5, 2.0 cases compared to κ =1.0 case

J. Kinsey - TTF07

Triangularity strongly impacts particle transport spectrum for elongated plasmas near a null flow point

- δ varied from 0.0 to 0.5 for STD case w/ κ =2.0
- Particle transport changes from D/D_{GB}=-1.73 to D/D_{GB}=+0.52
 - Transport from low k modes changes sign
 - Less of an effect at κ =1.0 (D/D_{GB}=-0.8 -> D/D_{GB}=-0.1 when δ =0.0 -> 0.5)

J. Kinsey - TTF07

ExB shear quench rule

- Effect of ExB flow shear on ITG/TEM transport implemented in GLF23 model is originally based on adiabatic electron simulations
- Quench rule:
 - $-\chi \propto [1 \alpha_{\rm E} (\gamma_{\rm E}/\gamma_{\rm max})]$

where γ_E = ExB shear rate, γ_{max} = max linear growth rate, and α_E = 1.0 ± 0.5

- Gyrofluid simulations by Waltz, et al found that driftwave transport was quenched when γ_E=γ_{max}, Dimits later found γ_E≈1.3γ_{max} in his gyrokinetic simulations (IAEA,2000)
- Since then, there has been uncertainty in the validity of the quench rule when kinetic electrons are included and for cases where the modes are rotating in electron direction

ExB shear quench rule remains valid with addition of kinetic electrons in nonlinear gyrokinetic simulations

- ExB shear quench point near $\gamma_E = 2\gamma_{max}$ for ions and electrons
 - Same quench point found for the adiabatic electron case
 - Also valid for TEM cases (e.g. STD case w/ $a/L_n=3$, $a/L_T=1$) and for negative shear (e.g. STD case w/ s=-0.5)
- Kelvin-Helmholtz drive (γ_p) outruns γ_E stabilization for large Rq/r
 - Transport not quenched when parallel velocity shear included in STD case (assuming purely toroidal rotation gives $\gamma_p / \gamma_E = (Rq/r) = 12$)
- Transport is not quenched for $\gamma_p = 4 \gamma_E$ with quench pt near 2.4

Real geometry simulations show the ExB shear quench point varies systematically with elongation & aspect ratio

- Quench point scales approximately like $\gamma_E / \gamma_{max} \propto (1/\kappa) A^{0.65}$ over the range of $1 < \kappa < 2$ and 2 < A < 5
- Systematic nonlinear scans in κ and δ were performed for the STD case with $\partial_r R_0 = 0$, $\alpha = 0$, $\beta = 0$ using the Miller equilibrium model in GYRO

– Gradient factors s_{κ} and s_{δ} varied as κ and δ are varied

Extension of ExB shear quench rule for real geometry

• A fit to the GYRO results for χ vs γ_E/γ_{max} over the range of $1 < \kappa < 2$ and 2 < A < 5 yields

$$\begin{split} \chi &\propto \left[1 - \alpha_{\text{E}}\left(\kappa, A\right)\left(\gamma_{\text{E}}/\gamma_{\text{max}}\right)\right] \\ \text{with} \\ \alpha_{\text{E}}\left(\kappa, A\right) &= 0.71[\kappa/1.5][A/3]^{-0.6} \text{ for flux-surface-constant Waltz } \gamma_{\text{E}} \\ \alpha_{\text{E}}\left(\kappa, A\right) &= 0.38[\kappa/1.5]^{-0.25}[A/3]^{-0.5} \text{ for outboard Hahm-Burrell } \gamma_{\text{E}} \end{split}$$

* For A=3, κ =1.5 : α_{E} (Waltz) = 0.71, α_{E} (HB) = 0.38

* Effect of triangularity on quench pt looks weak (< 10%) based on STD case runs w/ A=3, κ =1.5, further investigation needed

* Quench rule ONLY valid for low-k turbulence. Transport not actually quenched when unstable ETG modes included in the simulations

Comparison beween ExB shear fit for $\alpha_{\rm E}$ and GYRO results

J. Kinsey - TTF07

Summary

- The GYRO ion energy diffusivity, in gyro-Bohm units, exhibits a κ⁻¹ scaling at fixed minor radius using Miller geometry. This result is in good agreement with the ITER 98(y,2) scaling.
- Most of the elongation scaling in the simulations is due to the shear in elongation with a relatively weaker contribution from kappa itself.
- The κ scaling of the energy transport (especially χ_e) can vary and depends on where the transport peaks in $k_{\theta}\rho_s$ space.
 - Scaling is weaker if χ peaks at low $k_{\theta}\rho_s$ (high drive cases)
 - Scaling stronger when the peak occurs at high $k_{\theta}\rho_{s}$ (low drive cases)
- Fits to the κ exponents can be summarized as

$$\chi_i \propto \kappa^{-1.0+0.14(q-2)+0.33(s-1)+0.14(a/L_T-3)}$$

$$\chi_e \propto \kappa^{-1.4+0.14(q-2)+0.33(s-1)+0.54(a/L_T-3)}$$

Summary (cont.)

- GYRO simulations show an upshift in the nonlinear critical temperature gradient with no discernable change with elongation relative to the linear threshold
- Effect of triangularity is destabilizing for highly elongated plasmas, weak effect for circular shaped plasmas
- For shifted circle geometry, ExB shear quench rule remains valid in the presence of kinetic electrons with the quench point at γ_E=2γ_{max} for ions and electrons
 - Quench rule equally valid for both ITG and TEM cases
 - Transport may not be quenched if parallel velocity shear is included or if ETG transport is included
- Linear quench rule has been extended to real geometry with the ExB shear multiplier $\alpha_{\rm E}$ varying with elongation and aspect ratio
 - Extended rule found for flux surface constant (Waltz), Hahm-Burrell versions
 - Less ExB shear needed for high elongation and for low aspect ratio

