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A nonlinear simulation database has been created for
benchmarking and transport model development

• Over 350 nonlinear gyrokinetic simulations have been
performed using the GYRO code

http://fusion.gat.com/theory/gyro

• Systematic scans in R/a, r/a, q, s, α, a/Ln, a/LT, ν, β, Ti/Te, κ,
δ, dilution, and ExB shear with and without kinetic electrons
(most runs w/ kinetic electrons)

• Simulations around several reference cases: most with s-α
geometry, electrostatic (except for β scan), and flat
profiles across annulus, zero boundary conditions
– GA Standard Case (STD): R/a=3, r/a=0.5, q=2, s=1, α=0,

a/LT=3, a/Ln=1, Ti/Te=1, ν=0, β=0

– TEM1 Case: STD w/ a/Ln=2, a/LT=2

– TEM2 Case: STD w/ a/Ln=3, a/LT=1

• Miller equilibrium model used for κ and δ scans

• Diffusivities shown are time-averaged values and are
normalized to the gyro-Bohm diffusivity, χGB=csρs
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The effects of elongation and triangularity on turbulent
transport have been investigated using the Miller
equilibrium model in the GYRO code

• Nine parameters are required to describe the local equilibrium using
Miller geometry 

1
 :  κ (elongation), δ (triangularity), q, s (magnetic

shear), α (normalized pressure gradient) , A=R0/r, ∂rR0, along with
gradient factors of κ and δ (sκ and sδ)

• For D-shaped plasmas, the shape of a flux surface is specified in terms
of the major radius R and height Z as a function of the poloidal angle θ:

R = R0+ r cos[θ + (sin-1δ)sin θ]
Z =  κ r sinθ

• Systematic nonlinear scans in κ and δ were performed for the STD case
with ∂rR0=0, α=0, β=0

– For κ scans, we also varied sκ=(r/κ)∂rκ ≈ (κ-1)/κ

– For δ scans, we also varied sδ =(r/(1−δ2)0.5)∂rδ ≈ δ/(1−δ2)0.5

– All other quantities held fixed, including r, within κ and δ scans

^

1 R. L. Miller, et al, Phys. Plasmas 5, 973 (1998)
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Scaling with shape and aspect ratio requires a clear
definition of the diffusivity and what is held constant

• Elongation scans performed at fixed midplane minor radius, r, and
gradient scale lengths (defined in terms of r)

• Translation of χGYRO to χITER where  χ= χ / χGB = χ / (csρs
2/a)

χGYRO =<|   r|2> χITER

For concentric ellipses where “r” is the midplane minor radius:

<|   r|2>=(1+κ2)/(2κ2)

So, we have χITER =[2κ2/(1+κ2)] χGYRO χGB_Bunit /χGB_B0

                   =[2κ2/(1+κ2)] χGYRO (B0/Bunit)2

Where χGB_B0 and χGB_Bunit are the GB χ’s at fixed B0 and Bunit

We have a κ dependence that enters thru Bunit in ρs

Bunit=(ρ/r)(dρ/dr)B0 ≈ κB0 since ρ ≈ ( κ )0.5 r

Finally, we have

χITER (@fixed B0)≈2/(1+κ2) χGYRO (@fixed Bunit)
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GYRO simulations show elongation stabilizes transport

• Elongation and elongation gradient factor varied around GA STD case
– Miller geometry w/ kinetic electrons, collisionless, electrostatic
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GYRO simulations show the normalized energy diffusivities
decreasing linearly with increasing elongation for the STD case

• Linear decrease in transport for κ scan
around STD case

– At fixed power, we can write

So, going from κ=1.0 to 1.5 w/

                       yields an increase in τE of
(1.56/5)(1.53/5)=2.08

ITER 98(y,2) with                         yields

which yields (1.5)1.71=2.0 !

– D shows little or no κ dependence
when negative

-> D has same dependence as χ if D is
positive (e.g. s=0.5)
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Most of elongation scaling in GYRO simulations is from
elongation shear rather than local value of elongation

• Elongation varied in GYRO simulations around STD parameters holding
all other quantities fixed

• Elongation scan varying κ but with no elongation gradient (sκ) shows
that changing the local κ only result in a weak effect on transport
– Normalized χi scales like κ-1 if sκ is varied along with κ
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Elongation scaling of the energy transport can vary and
depends on the wavenumber where the transport peaks

• Elongation scans performed for a
variety of safety factors, magnetic
shears, and temperature gradients

• Elongation scaling for χe changes
more than χi

− Scaling is weaker if χ peaks at low
kθρs (high drive cases)

− Scaling stronger when the peak
occurs at high kθρs (low drive cases)

• Low k modes less sensitive to
elongation than higher k modes

• Higher k modes more sensitive to κ
and contribute more to χe

! 
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GYRO simulations show an upshift in the nonlinear temperature
gradient that is insensitive to elongation

• Linear (L) a/LT
crit increases with elongation

• Nonlinear (NL) a/LT
crit also increases with elongation

− For κ=1.0, can’t identify a threshold at low a/LT due to transition from ITG to TEM as a/LT

decreases

− For κ > 1.0, a NL threshold is evident but can’t discern any change in (a/Lt
crit,L - a/Lt

crit,NL)
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Dependence of transport on triangularity weak for κ=1 plasmas,
somewhat stronger for elongated plasmas
• δ varied for κ=1.0, 1.5, and 2.0 using STD parameters

– Miller geometry, delta gradient factor sδ varied along with δ

• Transport increases with δ for high elongation
– Stronger dependence for κ=1.5, 2.0 cases compared to κ=1.0 case

κ=1.0 κ=1.5

sκ=0.33
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Triangularity strongly impacts particle transport spectrum
for elongated plasmas near a null flow point
• δ varied from 0.0 to 0.5 for STD case w/ κ=2.0

• Particle transport changes from D/DGB=-1.73 to D/DGB=+0.52

– Transport from low k modes changes sign
– Less of an effect at κ=1.0 (D/DGB=-0.8 -> D/DGB=-0.1 when δ=0.0 -> 0.5)

δ=0.0 δ=0.5
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ExB shear quench rule

• Effect of ExB flow shear on ITG/TEM transport implemented
in GLF23 model is originally based on adiabatic electron
simulations

• Quench rule:

– χ ∝ [1 - αE (γE/γmax)]

where γE = ExB shear rate, γmax = max linear growth rate,
and αE = 1.0 ± 0.5

• Gyrofluid simulations by Waltz, et al found that driftwave
transport was quenched when γE=γmax, Dimits later found
γE≈1.3γmax in his gyrokinetic simulations (IAEA,2000)

• Since then, there has been uncertainty in the validity of the
quench rule when kinetic electrons are included and for
cases where the modes are rotating in electron direction
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ExB shear quench rule remains valid with addition of
kinetic electrons in nonlinear gyrokinetic simulations

• ExB shear quench point near
γE=2γmax for ions and electrons
− Same quench point found for

the adiabatic electron case

− Also valid for TEM cases (e.g.
STD case w/ a/Ln=3, a/LT=1)
and for negative shear (e.g.
STD case w/ s=-0.5)

• Kelvin-Helmholtz drive (γp)
outruns γE stabilization for large
Rq/r
− Transport not quenched when

parallel velocity shear included in
STD case (assuming purely toroidal
rotation gives γp / γE =(Rq/r)=12)

• Transport is not quenched for
γp=4 γE with quench pt near 2.4 s-α geometry kθ ρs <= 0.75

16 modes γmax w/ γp
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Real geometry simulations show the ExB shear quench
point varies systematically with elongation & aspect ratio
• Quench point scales approximately like γE /γmax ∝ (1/κ)A0.65 over the

range of 1 < κ < 2 and 2 < A < 5

• Systematic nonlinear scans in κ and δ were performed for the STD case
with ∂rR0=0, α=0, β=0 using the Miller equilibrium model in GYRO

– Gradient factors sκ and sδ varied as κ and δ are varied
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Extension of ExB shear quench rule for real geometry

• A fit to the GYRO results for χ vs γE/γmax over the range of
1 < κ < 2 and 2 < A < 5 yields


  χ ∝ [1 - αE (κ,A) (γE/γmax)]

with


  αE (κ,A) = 0.71[κ/1.5][A/3]-0.6 for flux-surface-constant Waltz γE


 αE (κ,A) = 0.38[κ/1.5]-0.25[A/3]-0.5 for outboard Hahm-Burrell γE


 * For A=3, κ=1.5 : αE (Waltz) = 0.71, αE (HB) = 0.38


 * Effect of triangularity on quench pt looks weak (< 10%) based on STD
case runs w/ A=3, κ=1.5, further investigation needed


 * Quench rule ONLY valid for low-k turbulence. Transport not actually
quenched when unstable ETG modes included in the simulations
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Comparison beween ExB shear fit for αE and GYRO results


 αE (κ,A) = 0.71[κ/1.5][A/3]-0.6 for Waltz γE
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Summary

• The GYRO ion energy diffusivity, in gyro-Bohm units, exhibits a
κ-1 scaling at fixed minor radius using Miller geometry. This result
is in good agreement with the ITER 98(y,2) scaling.

• Most of the elongation scaling in the simulations is due to the
shear in elongation with a relatively weaker contribution from
kappa itself.

• The κ scaling of the energy transport (especially χe) can vary
and depends on where the transport peaks in kθρs space.
− Scaling is weaker if χ peaks at low kθρs (high drive cases)

− Scaling stronger when the peak occurs at high kθρs (low drive cases)

• Fits to the κ exponents can be summarized as
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Summary (cont.)

• GYRO simulations show an upshift in the nonlinear critical
temperature gradient with no discernable change with
elongation relative to the linear threshold

• Effect of triangularity is destabilizing for highly elongated
plasmas, weak effect for circular shaped plasmas

• For shifted circle geometry, ExB shear quench rule remains
valid in the presence of kinetic electrons with the quench point
at γE=2γmax for ions and electrons
− Quench rule equally valid for both ITG and TEM cases

− Transport may not be quenched if parallel velocity shear is included or if ETG
transport is included

• Linear quench rule has been extended to real geometry with the
ExB shear multiplier αE varying with elongation and aspect ratio
− Extended rule found for flux surface constant (Waltz), Hahm-Burrell versions

− Less ExB shear needed for high elongation and for low aspect ratio


