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Motivation

* Now recognized that Verification and Validation is essential part of
predictive modeling

— Verification: is the model being solved correctly?

— Vadlidation: is the model a good representation of the
physics under consideration?

* In practice, there is now a (minimal) standard set of verification tests for
gyrokinetic adiabatic electron ITG flux tube simulations:
— Reproduction of linear growth rate

— Reproduction of Rosenbluth-Hinton zonal flow damping and residual zonal
flow level

— Reproduction of ‘Dimits shift’
— Reproduction of y; for CYCLONE base case parameters

 Still work to do on verification (kinetic e-, profile /p* effects, §-scaling,...),
but now appropriate to begin serious validation efforts
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Motivation (cont.)

e Validation of driff-wave simulations requires comparison against
core fluctuation measurements, where the underlying
gyrokinetic model implmented in the simulations (which uses a
small p* ordering) is believed to be valid

 Validation also requires using “synthetic” diagnostics which
describe the inherent spatio-temporal sensitivities of the
experimental diagnostic system under consideration

e Have begun the process of developing a set of IDL tools for post-
processing GYRO data to create a synthetic beam emission
speciroscopy diagnostic suitable for direct comparison against
the system deployed on DIlI-D
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1. Overview of BES system and synthetic diagnostic

2. Results from applying synthetic to a simple GYRO
simulation

3. Study #1: effects of varying BES light collection volume
4. Study #2: effects of finite ExB shear of BES performance

5. Future work: modeling a slowly-evolving L-mode

discharge
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BES System Configured to Provide Zonal Flow

Measurements Over Large Fraction of Plasma

. Beam Emission Spectroscopy (BES) measures collisionally excited, Doppler-
shifted neutral beam fluorescence at multiple spatial locations
L +ei= (D”) = D% +y(n=3—>2A,=656.1 nm)
. Measured fluctuation 81/l « 6n/n — BES measures localized, long-wavelength
(k,p; < 1) density fluctuations
—  Can be radially scanned shot to shot to measure turbulence profiles
—  Recent upgrades allow for BES fo measure core fluctuations
(Gupta et al, Rev. Sci. Inst 75 3493 2004)
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Synthetic BES Development

 Two key parts of of a synthetic BES tool:

— Converting density and temperature fluctuations info D, light
fluctuations

— Modeling spatial sensitivity of each BES channel

* Previous work by R. Bravenec found D, issue can be
important at high density
— For typical DIlII-D densities, 8l is roughly proportional to dn

e Work to date has focused on the spatial sensitivity aspect,
using DIII-D specific calculations
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Calculate Point Spread Functions (PSFs) which

Describe BES Channel Spatial Averaging

e Each BES Channel is characterized by a “Point
Spread Function” (PSF) which provides a
measure of the 2D (R,Z) sample volume of the
channel, integrated along the BES sightline o

2k

e Model accounis geometric and atomic
effects

— Use MSE to account for differences between
local field line pitch and viewing angle

— Finite n=3 beam atom lifetime leads to a -
“smearing” effect

€

e Core measurements have non-optimal - |
sightline, leading to reduced radial resolution

- Note that PSF peak and “center-of-mass” are -
not colocated with nominal channel “location”
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GYRO Simulation Used for Testing

 Use along time-run GYRO simulation for initial testing of synthetic
BES diagnostic
— Electrostatic, adiabatic electrons, no impurities, N, = 16, t—4500 a/C,

— Circular s-a geometry, flat profiles, non-periodic radial boundary
conditions, but include finite ExB shear = linear vy, ,

t=1, R,/r,=3,q=2,5=1, p. =0.035, a/L, =0.6, a/L, =22, v.,=0.05 a/c,

Yiin & W, for Yexe = 0
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Applying PSF to GYRO Simulation Data

* |IDL post processing tool written to generate synthetic BES array

[0.053

e Tool first interpolates PSF data (generated oo
on a regularly spaced (R,Z) grid) onto
a grid compatible with GYRO data
(which uses a field-line following R 000
(r,0,0) coordinate system), defined via  _,
R(r,0) = R,(r)+rcos(0+xsin6)

Z(r,0) =k(r)rsinf, x=sin"'()

0.035

0.02
0.018

0.0

-0.018

1l —0.035

-0.053

e At each time point of interest, record

| fdzx/wPSF(x _ x',y _ yr)ﬁiGYRO (x',y',t)
~ Synthetic signal defined as e (¥.7.1) =

fdzxerSF(x _ x',y _ y;)

— GYRO signal at gridpoint closest to nominal BES location
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Synthetic signals well-correlated with GYRO signals

BES (R/0,Z/a) location; (3.500,0. OOOO)

 Synthetic channel exhibits temporal
dynamics corresponding GYRO signal

0.01F

1
0.00F | |,

GYRO: solid, BES: dashed

e RMS fluctuation levels underestimated
by 30%-50%, depending on simulation
parameters (50% here)
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* Confirmed by examining frequency ::/
spectra of synthetic and GYRO signals, -
as well as coherency and cross- i
phase between them
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Observe Significant Overlap in Neighboring PSFs

* 1/e = 37% (dashed) and 90% (solid) contours of
full BES array at several timepoints shown below

— PSF scale leads to significant effective radial
overlap in channels, smaller vertical overlap
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Comparison of correlation lengths

 When PSF response is not deconvolved, synthetic
diagnostic significantly overestimates radial correlation

— Tool for implementing deconvolution still in development
— Does much better with vertical correlation
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Comparison of decorrelation rates

 Synthetic diagnostic also appears to significantly
overestimate decorrelation rate of fluctuations

— Define t_ by fitting exponential to peaks of C(AZ, t) envelope
— Good agreement in location of peaks of C(AZ, T)

syn. BES C(-AZ/o,T) GYRO C(-4Z/0,7)
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First Study: PSF Size Effects

* First study carried out was a “sanity check” to make sure
that as the effective scale of the PSF was reduced, the
synthetic signal approached to simulation signal

e Compare effects of using 1/2 and 1/4 size PSF
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All results converge with PSF size as expected

* Find improved agreement with 1/2 size, extremely good
with 1/4 size array

— Nofte in partficular convergence in C(Ar) and T,
— 1/2 size in blue, 1/4 size in red, solid is GYRO, dashed synthetic
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Study #2: Effects of ExB shear

 Want to assess how ExB shear (which strongly impacts frequency
specira, correlation lengths) affects BES performance

e Compare initial results to results from an identical simulation with
Yexg = 0 (Vee = 0 inred, yg,p = 0.05 C./a in black)
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Observe similar performance as sheared case

(I ion 8n(w)l ?)

GYRO

* Basic trends from sheared case are
repeated: overestimation of radial
correlation and t_; good agreement on
vertical correlation and phase/group s
velocity ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ;
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Next step: direct comparison against against

experiment

 Now that synthetic BES post-processing tools are (just about)
done, can begin process of direct comparison to
experimental data

 Initial study will use a series of identical discharges which
have long, slowly evolving L-mode phases
— Multiple repeat discharges allowed BES array to be scanned

radially, allowing characterization of fluctuations over large
fraction of plasma volume

— See George McKee's (TTF) talk and poster for more info on
these discharges

* Profile analysis done; ready to do transport analysis and
then start in on “full-physics” simulations

— Goal: have results ready for APS.
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Use steady L-mode phase for initial study
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Full set of equilibrium profile and fluctuation data
ready for comparison
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Long-term goal: using fluctuations to consirain

simulation-experiment flux comparisons

Py —
- (@) +10%
* Accurate calculation of flux profilesisa 5 s
primary goal of predictive modeling 1 |
= 2 10
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* Profile stiffness makes this difficult: can B 7T
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error bars), and change flux by a factor R A
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Conclusions and Future work

* IDL tools for post-processing GYRO simulation results to generate a
“synthetic” BES array are now mostly completed

- Still need to integrate GYRO->D, light filter

— Significant radial overlap of channels strongly impacts radial
correlation length estimates; deconvolution tool underway

— Would like to understand why synthetic decorrelation rates so large,

despite good agreement in vertical correlation length &V, co. V0o

— Verified that synthetfic diagnostic accurately reproduces simulation
dynamics when PSF size is sufficiently reduced

— ExB shear has no strong impact on BES performance(?)

e Ready to move on to direct simulation-experiment comparisons.
Next step is to begin “full-physics” simulations

 Long-term goal: examine how constraint of matching fluctuation
characteristics affects predictions of stiff transport
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