Particle Transport At Low Collisionality on Alcator C-Mod

US-EU TTF Meeting

San Diego, 4/18/2007

M. Greenwald, J.W. Hughes, D. Mikkelsen, J. Terry, K. Zhurovich,

Alcator Group

Collisionality Effects on Particle Transport

- ITER interest better fusion performance with moderate density peaking
- Results from ASDEX, JET suggest increase in density peaking at low v* (note plots use $v_{eff} = v_{ef}/v_{De}$ not v*)
- Much of the previous work has significant beam fueling (C-Mod uses RF only)
- Until recently, C-Mod density was too high to enter the very low v* regime.

Low Density H-Modes Accessible With "Unusual" Shape

M. Greenwald, et al., TTF 2007

H-Mode In Standard C-Mod Shape

M. Greenwald, et al., TTF 2007

Lower Density H-Modes Show More Profile Peaking

- We don't know why these shapes allow operational H-mode at lower target densities
 - Lower L-H threshold density
 - ELMs seem to reduce rate of density rise in H-mode
- Whatever the cause:
 - Standard H-mode $n_{e0}/<n_e> = 1.1-1.2$ $L_n >> a, R/L_n \sim 0, R/L_T \sim 6-7$
 - Low-Density H-mode $n_{e0}/<n_e> = 1.5$ $R/L_n \sim 3-4, R/L_T \sim 6-7$

Difference In Profile Shape Is Notable

- Peaking is seen over outer 60% of plasma radius
- H-mode profiles evolve quickly; τ << a/V_{WARE}
- Transport in center of plasma may be affected by sawteeth
 - These are of large amplitude; δT_e/T_e ~ 25%
- Radii chosen to characterize peaking in ASDEX-U are appropriate for C-Mod profiles
- So, collect a database and plot results....

Low Density H-modes Are Accompanied By ELMs

Cause and effect are not clear...

Even In Low-Density H-mode, T_i ~ T_e

In Low Density H-modes $n_e(0) > \tilde{n}_e > \langle n_e \rangle$

Collisionality in Low Density H-modes

Energy Confinement in Low Density H-modes

ELMs in Low Density H-modes

M. Greenwald, et al., TTF 2007

Temperatures In Standard Density H-modes

Collisionality in Standard Density H-modes

Energy Confinement in Standard Density H-modes

EDA in Standard Density H-mode

Trend Of Increased Density Peaking At Low Collisionality Is Observed For ICRF Heated H-Modes In C-Mod

n/n_G Is Apparently Not A Good Scaling Parameter For Comparing C-Mod and JET Peaking

ald, et al., TTF 2007

C-Mod Data Is Consistent With Previously Published ASDEX-U and JET Data

Density Limit Does Not Appear To Be Good Scaling Variable

Data With NBI Heating (Fueling) Shows More Peaking

Including NBI Data Makes Match To Density Limit Worse

State Of Theory/Computation

- ITG/TEM turbulence can predict inward particle flux in the collisionless limit (Quasi-linear calculations: Angioni, Phys. Plasmas 12, 112310, 2005)
 - Thermodiffusion mechanism (Coppi, PRL 41, 551, 1978)
 - Driven by ∇T_i , for $R/L_T > R/L_n$
 - "Pinch" disappears at higher collisionality
 - Depends on relative strength of ITG and TEM (L_T , η , ν , T_e/T_i)
- However: collisionality range with density peaking is predicted to be about 30 x smaller than what is seen in experiments
- Nonlinear GK simulations see pinch at experimentally realistic v_{eff}, but only by lowering L_n/L_T (*Estrada-Milna, Phys. Plasmas 12* 022305, 2005)

State Of Theory/Computation 2

- Simulations of C-Mod discharges with GYRO have begun
- (Extremely preliminary results)
 - particle diffusivity $k_{\theta}\rho_s$ spectrum extends to unusually large values.
 - The current runs show no peak up to $k_{\theta}\rho_s = 1$
 - the normalized particle diffusivity is small (absolute value ~ 0.1 perhaps < 0).
 - Increasing the range of k_{θ} will apparently push the particle flux farther in the negative direction (toward a pinch).

Summary

- Significant density profile peaking seen at low collisionality
- Trend and values match data from ASDEX-U and JET
 - Lack of NBI fueling does not affect result
 - Lack of Ware pinch does not affect result
 - Result holds for Ti ~ Te
 - Work extended to higher neutral opacity (ITER-like)
 - Addition of C-Mod data suggest that v_{eff} is appropriate scaling variable rather than n/n_{G} (These are strongly correlated, especially on any given machine) Good news for ITER
- Effect of shaping?
- Installation of cryopump and increased LH power will allow substantial extension of this work.

Same With Respect To JET Data....

C-Mod Data Overlays ASDEX-U

