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Introduction

* Motivation: Use turbulence code predictions to help determine best
parameter regimes of interest for comparison with experimental
turbulence measurements.

* Simplify initial comparisons by creating discharges where

— either ITG or TEM dominates the turbulence spectra or

— line splitting allows identification of both modes simultaneously,
where line splitting is positive or negative shifts of ITG or TEM frequencies
about the Doppler shift frequency due to a radial electric field

* Two experimental approaches identified

— create a discharge where TEM dominates using ECH. By replacing ECH
power with NBl power, ITG modes are expected 1o dominate.

— attempt to furn the TEM mode on and off by driving the normalized local
gradient scale length a/Ly above and below the threshold value, using the
ECH swing technique where ECH is deposited at two closely spaced radial
locations with power applied alternately at each spacial location.
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Discharge Characteristics Favoring TEM Dominance

e Low collisionality = low density

* T. > T. = ECH auxillary power

* Low threshold for TEM activity

— large values of C'/LTe = peaked temperature profile

e Replacing ECH power with NBI power will favor ITG dominance by
—increasing Ti/Te

—increasing a/ly.
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L-mode Target Discharge ldentified With TEM Dominant

118480

* Limited on inside wall to avoid H-mode
tfransition

°*l,=0.8 MA,B;=20T,n.=1.7x10""m3,qq=7

e Early NBI to delay onset of sawteeth, then
NBI off and ~2 MW ECH power

e Similar discharge with 4 MW NBI (115280)
has dominant ITG modes
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Profiles for TEM Dominant and ITG Dominant Discharges
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Normalized Gradient Scale Lengths
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TGLF Model Used To Compute Drift Wave Turbulence

* Trapped Gyro-Landau Fluid model (TGLF) is a significant improvement
over the GLF23 model used worldwide

— provides better fit to non-linear gyrokinetic turbulence simulations

— particularly improved the treatment of trapped particles

— speed is 100x faster for linear stability analysis of experimental discharges
— output includes growth rates for the dominant electron and ion modes

e Contains comprehensive physics including

— TIM, ITG, TEM, ETG modes computed from a single set of equations
— shaped magnetic geometry

— electron-ion collisions

— fully electromagnetic

— dynamic electrons, ions and impurity ions considered

e See |IAEAO7 paper TH/1-2 by G.M. Staebler for detailed comparison of
TGLF and GLF23 models (also to appear in Phys. Plasmas May issue).
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Growth Rate Spectra Dominated By TEM For 118480

In Spectral Range kgps ~0.1-1Orky~0.5-5cm-!

r/a=0.30 r/a=0.40

L@ electron mode
- ® ion mode

- 115280

10 100

JCD/TTFO7



Growth Rate Spectra Dominated By ITG For 115280

In Spectral Range kgp, £0.4 Or ky <3 cm-!
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Growth Rate Spectra (continued)

r/a=0.70 r/a =0.80
10 ¢ 10 ¢
- @ electron mode ; (]
- @ ion mode ° i
= 1 3 . 1 3 °
© i © i
~» i d )
§ 0.1F ¢ § 0.1¢
> ® > g <
ﬁ * iy
0.01 ¢ u 0.01 3
ol 118480 oM . 118480
0.001 ————l—— e 0001 —————M ol ol
10 B @ | 10 B M)
; / a | /
1 a2 @ 1 a3 (]
S E ¢ S E )
£ ol _.-""‘: L o1l g
>= i ° > ; % =
0.01 &' ° 0.01 & °
B % 115280 : ° 115280
0.001 ——————# 0.001 o8 : ol
0.01 0.1 ‘ 1 10 100 0.01 0.1 1 10 100

JCD/TTFO7




The Best Region To Look In The Plasma For Maximum

Difference In Growth Rates Isr/a=0.4 - 0.5
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The Best Region To Look In The Plasma For Maximum
Difference In Turbulence Levels Is r/a ~ 0.5
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ETG Modes Are Calculated To Be Unstable Over

Most Of The Plasma But With k, 2 30 cm-]

10

a/LTe

20 1

KgPg

o N A O o

15 |

10 |

118480

— experimental value
[~ = critical value for ETG

0 0.2

r/a

04 06 08 1

115280

| —— experimental value
- — critical value for ETG

r/a

0 02 04 06 03

60
50
402
=
30S
D



ECH Swing Technique Can Be Used To Make Large

Variations In VT, and a/Li. At Constant T,

ECH Resonance e Alternately apply ECH power at two
Layer . .
closely spaced locations in the plasma

ECH Launch * The local value of VI_ can be
o al significantly varied while keeping T,

AN
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GKS Calculations Indicate Reducing a/Li. By ~ 25%

Can Stabilize TEMs

o a o] * Stability calculations with GKS done for
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Turbulence Measurement Diagnostics on DIII-D

Cover A Large Range in k-Space

k (cm™ )  Wavenumber region potentially occupied
. 0 100 by ITG, TEM, and ETG instabilities
e ] ¢ Large k-space probed by fluctuation
| " diognostics on DILD

- | — U. Wisc. beam emission spectroscopy (BES),

_ upgraded for improved sensitivity, probes

Backscatterlng PCl —» - 0-3.5 cm-!

— UCLA FIR scattering system upgraded to

probe low (0-2 cm-1) and intermediate

i - ' wavenumbers (8-15 cm-1)
: ETG — High-k backscattering systems (~40 cm—1)

_- (UCLA)

: — MIT phase contrast imaging (PCl) upgraded
G and long A Pi=0.3cm ; to probe core plasma, 0-30 cm-!
0.01' ' 01 — 1 — 10 ' — Te measurement using ECE (0-1 cm™1)
kp, (UCLA)
|

— Fluctuation, Doppler and correlation
reflectometry probe 0-5 cm=! (UCLA)
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Conclusions

 The TGLF model has been employed to aid in the design of an
experiment to discriminate between ITG and TEM turbulence.

* By creating target L-mode discharges with low density and collisionality
and peaked Te profiles with ECH, the TEM mode is expected to clearly
dominate the turbulence near the plasma mid radius.

* Replacing the EC heating power with NBI is expected to switch the
dominant turbulent mode from TEM to ITG. Reducing a/LT¢ by about
25% should also allow ITG to dominate by stabilizing TEMs.

* The interesting region in k-space is kgpg ~0.1 -1 (0.5 - 5 cm-1) atr/a ~ 0.5.

e Turbulence diagnostics are deployed on DIII-D that are capable of
observing this change in turbulence modes.
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