### Design of an Experiment to Discriminate Between ITG and TEM Turbulence

by

J.C. DeBoo<sup>1</sup>, E.J. Doyle<sup>2</sup>, J.E. Kinsey<sup>1</sup>,

T.L. Rhodes<sup>2</sup> and G.M. Staebler<sup>1</sup>

<sup>1</sup>General Atomics

<sup>2</sup>University of California at Los Angles

Presented at the 12th US-EU Transport Task Force Workshop San Diego, CA

April 17-20, 2007





### Introduction

- Motivation: Use turbulence code predictions to help determine best parameter regimes of interest for comparison with experimental turbulence measurements.
- Simplify initial comparisons by creating discharges where
  - either ITG or TEM dominates the turbulence spectra or
  - line splitting allows identification of both modes simultaneously,
    where line splitting is positive or negative shifts of ITG or TEM frequencies
    about the Doppler shift frequency due to a radial electric field
- Two experimental approaches identified
  - create a discharge where TEM dominates using ECH. By replacing ECH power with NBI power, ITG modes are expected to dominate.
  - attempt to turn the TEM mode on and off by driving the normalized local gradient scale length  $a/L_{T_e}$  above and below the threshold value, using the ECH swing technique where ECH is deposited at two closely spaced radial locations with power applied alternately at each spacial location.



### Discharge Characteristics Favoring TEM Dominance

- Low collisionality ⇒ low density
- $T_e > T_i \Rightarrow ECH$  auxillary power
- Low threshold for TEM activity
  - large values of a/ $L_{T_e} \Rightarrow$  peaked temperature profile
- Replacing ECH power with NBI power will favor ITG dominance by
  - increasing T<sub>i</sub>/T<sub>e</sub>
  - increasing a/L<sub>Ti</sub>



### L-mode Target Discharge Identified With TEM Dominant

Limited on inside wall to avoid H-mode transition

• 
$$I_p = 0.8 \text{ MA}$$
,  $B_T = 2.0 \text{ T}$ ,  $n_e = 1.7 \times 10^{19} \text{ m}^{-3}$ ,  $q_a = 7$ 

- Early NBI to delay onset of sawteeth, then NBI off and ~2 MW ECH power
- Similar discharge with 4 MW NBI (115280) has dominant ITG modes





### Profiles for TEM Dominant and ITG Dominant Discharges





### Normalized Gradient Scale Lengths





### TGLF Model Used To Compute Drift Wave Turbulence

- Trapped Gyro-Landau Fluid model (TGLF) is a significant improvement over the GLF23 model used worldwide
  - provides better fit to non-linear gyrokinetic turbulence simulations
  - particularly improved the treatment of trapped particles
  - speed is 100x faster for linear stability analysis of experimental discharges
  - output includes growth rates for the dominant electron and ion modes
- Contains comprehensive physics including
  - TIM, ITG, TEM, ETG modes computed from a single set of equations
  - shaped magnetic geometry
  - electron-ion collisions
  - fully electromagnetic
  - dynamic electrons, ions and impurity ions considered
- See IAEA07 paper TH/1-2 by G.M. Staebler for detailed comparison of TGLF and GLF23 models (also to appear in Phys. Plasmas May issue).



## Growth Rate Spectra Dominated By TEM For 118480 In Spectral Range $k_{\theta}\rho_{s} \sim 0.1 - 1$ Or $k_{\theta} \sim 0.5 - 5$ cm<sup>-1</sup>





# Growth Rate Spectra Dominated By ITG For 115280 In Spectral Range $k_{\theta}\rho_{s} \leq 0.4$ Or $k_{\theta} \leq 3$ cm<sup>-1</sup>





### Growth Rate Spectra (continued)





## The Best Region To Look In The Plasma For Maximum Difference In Growth Rates Is r/a = 0.4 - 0.5



- Growth rate profile at  $k_{\theta} \rho_s = 0.3$
- For r/a = 0.4 0.5 at  $k_{\theta} \rho_{s} = 0.3$  $k_{\theta} = 1.4 - 2.0 \text{ cm}^{-1}$





## The Best Region To Look In The Plasma For Maximum Difference In Turbulence Levels Is $r/a \sim 0.5$

$$\frac{\tilde{n}_e}{n_e} \sim \gamma_n/k_n^2 = \frac{\gamma/(c_s/a)}{(k_\theta \rho_s)^2}$$





## ETG Modes Are Calculated To Be Unstable Over Most Of The Plasma But With $k_{\theta} \ge 30 \text{ cm}^{-1}$





# ECH Swing Technique Can Be Used To Make Large Variations In $\nabla T_e$ and a/ $L_{Te}$ At Constant $T_e$



- Alternately apply ECH power at two closely spaced locations in the plasma
- The local value of ∇T<sub>e</sub> can be significantly varied while keeping T<sub>e</sub> roughly constant







### GKS Calculations Indicate Reducing $a/L_{Te}$ By ~ 25% Can Stabilize TEMs



- Stability calculations with GKS done for fixed value of  $k_{\theta}\rho_s$  = 0.9 ( $k_{\theta}$  ~ 3.9 4.7 cm<sup>-1</sup>) and at several radii, r/a = 0.52 0.64
- ullet a/L<sub>Te</sub> varied to find the stability threshold
- Reducing  $a/L_{T_e}$  by about 25% is enough to stabilize the mode

## Turbulence Measurement Diagnostics on DIII-D Cover A Large Range in k-Space



- Wavenumber region potentially occupied by ITG, TEM, and ETG instabilities
- Large k-space probed by fluctuation diagnostics on DIII–D
  - U. Wisc. beam emission spectroscopy (BES), upgraded for improved sensitivity, probes 0–3.5 cm<sup>-1</sup>
  - UCLA FIR scattering system upgraded to probe low (0–2 cm<sup>-1</sup>) and intermediate wavenumbers (8–15 cm<sup>-1</sup>)
  - High-k backscattering systems (~40 cm<sup>-1</sup>)
    (UCLA)
  - MIT phase contrast imaging (PCI) upgraded to probe core plasma, 0–30 cm<sup>-1</sup>
  - $\tilde{T}_e$  measurement using ECE (0–1 cm<sup>-1</sup>) (UCLA)
  - Fluctuation, Doppler and correlation reflectometry probe 0-5 cm<sup>-1</sup> (UCLA)



#### Conclusions

- The TGLF model has been employed to aid in the design of an experiment to discriminate between ITG and TEM turbulence.
- By creating target L-mode discharges with low density and collisionality and peaked T<sub>e</sub> profiles with ECH, the TEM mode is expected to clearly dominate the turbulence near the plasma mid radius.
- Replacing the EC heating power with NBI is expected to switch the dominant turbulent mode from TEM to ITG. Reducing a/LT<sub>e</sub> by about 25% should also allow ITG to dominate by stabilizing TEMs.
- The interesting region in k-space is  $k_{\theta}\rho_{s}\sim 0.1$  1 (0.5 5 cm<sup>-1</sup>) at r/a  $\sim 0.5$ .
- Turbulence diagnostics are deployed on DIII-D that are capable of observing this change in turbulence modes.

