Magnetic Fluctuation-Induced Particle Transport

and Zonal Flow Generation in MST

D.L. Brower

Weixing Ding, B.H. Deng

University of California, Los Angeles, USA

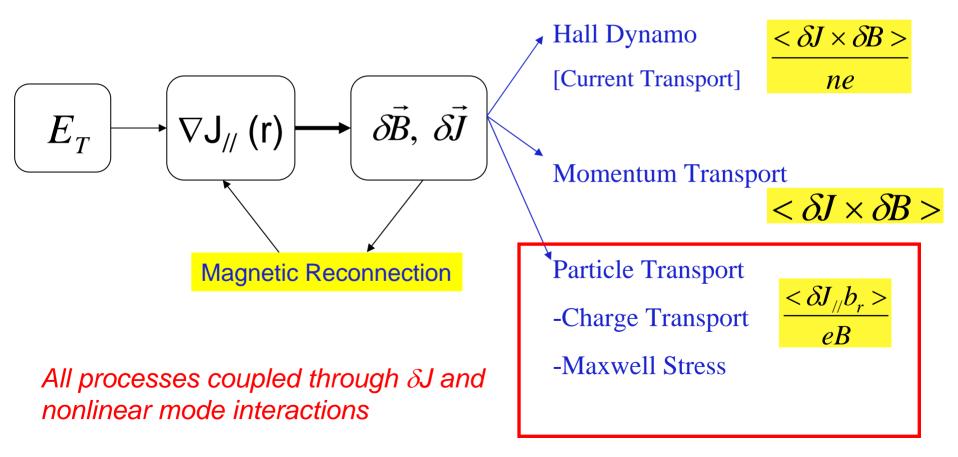
D. Craig, S.C. Prager, J. Sarff, V. Svidzinski

University of Wisconsin-Madison, Madison, Wisconsin, USA

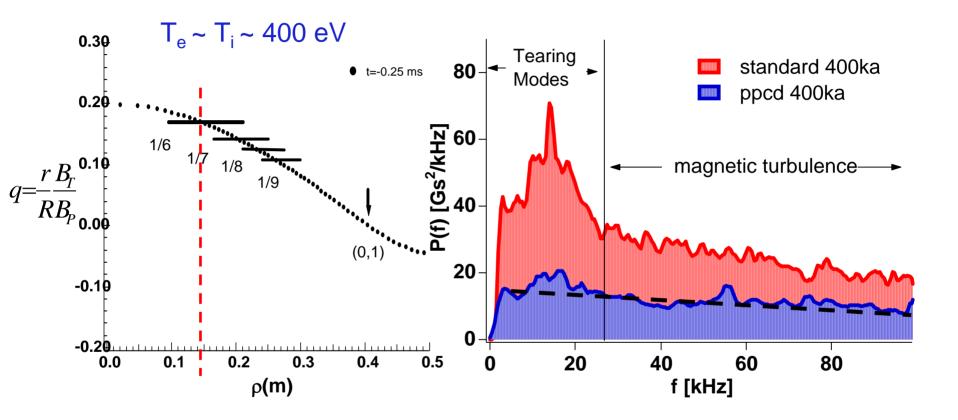
12th US-EU TTF Workshop 17-20 April 2007 San Diego, CA

Introduction

Magnetic and Current Density fluctuations play an important role in transport and plasma relaxation for the Reversed Field Pinch (RFP) and tokamak configurations



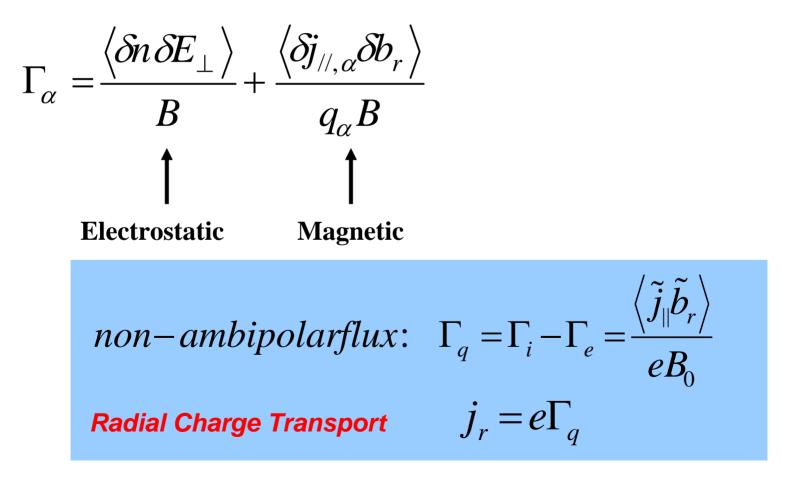
q Profile and Core Magnetic Fluctuation Spectrum



Tearing modes and broadband magnetic turbulence

Magnetic Fluctuation-Driven Charge Flux

Fluctuation-Induced Particle flux



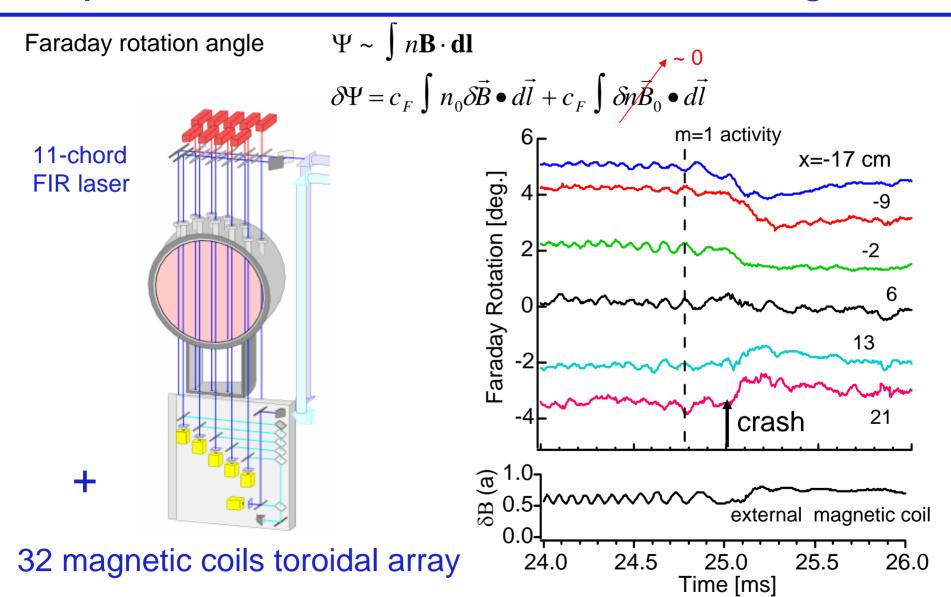
Magnetic Fluctuation-Driven Charge Flux and Maxwell Stress

$$\begin{split} \Gamma_{q} &= \frac{\langle \tilde{j}_{||}\tilde{b}_{r} \rangle}{eB} = \frac{1}{eB} \Biggl[\langle \delta \tilde{j}_{\phi} \delta b_{r} \rangle \frac{B_{\phi}}{B} + \langle \delta \tilde{j}_{\theta} \delta b_{r} \rangle \frac{B_{\theta}}{B} \Biggr] \approx \frac{1}{eB} \frac{R}{nB} (\vec{k} \cdot \vec{B}) \langle \frac{1}{r} \tilde{b}_{r} \frac{\partial}{\partial r} r \tilde{b}_{\theta} \rangle \\ \Gamma_{q} &\approx \frac{1}{eB} \frac{B_{\phi}}{B} (1 - \frac{m}{nq(r)}) \langle \tilde{j}_{\phi} \tilde{b}_{r} \rangle \\ where \quad \vec{k} \cdot \vec{B} = \frac{n}{R} B_{\phi} + \frac{m}{r} B_{\theta} \qquad and \qquad \frac{B_{\phi}}{B} (1 - \frac{B_{\theta}Rm}{B_{\phi}nr}) \frac{\langle \delta b_{r} \delta b_{\theta} \rangle}{r} \approx 0 \\ \nabla \times \delta \vec{B} = \mu_{0} \delta \vec{J} \quad \text{and} \quad \frac{|r - r_{s}|}{r_{s}} \langle 1 \quad and \quad \langle \rangle \quad denotes \ flux \ surface \ average \ denotes \ flux \ surface \ average \ denotes \ flux \ surface \ average \ denotes \ flux \ surface \ denotes \ deno$$

 $< \tilde{j}_{\phi} \tilde{b}_r >$ Lorentz force equivalent to Maxwell Stress

$$\frac{\partial}{\partial r} < \delta b_r \delta b_{\theta} >$$

Fast polarimeter measures core mean and fluctuating B & J

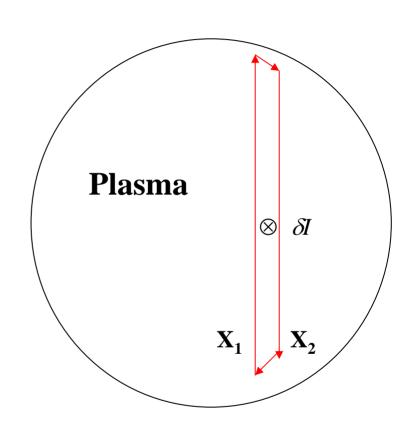


Ampere's Law :
$$\oint_{L} \delta \vec{B} \cdot d\vec{l} = \mu_{0} \delta \vec{I}$$

Faraday Rotation Fluctuation:
 $\delta \Psi = c_{F} \int n_{0} \delta \vec{B} \cdot d\vec{l} \approx c_{F} \overline{n}_{0} \int \delta \vec{B} \cdot d\vec{l}$
 $\oint_{L} \delta \vec{B} \cdot d\vec{l} \approx \left[\int \delta B_{z} dz \right]_{x_{1}} - \left[\int \delta B_{z} dz \right]_{x_{2}}$
 $\approx \mu_{0} \delta I_{\phi} = \frac{\delta \Psi_{1} - \delta \Psi_{2}}{c_{F} \overline{n}_{0}}$

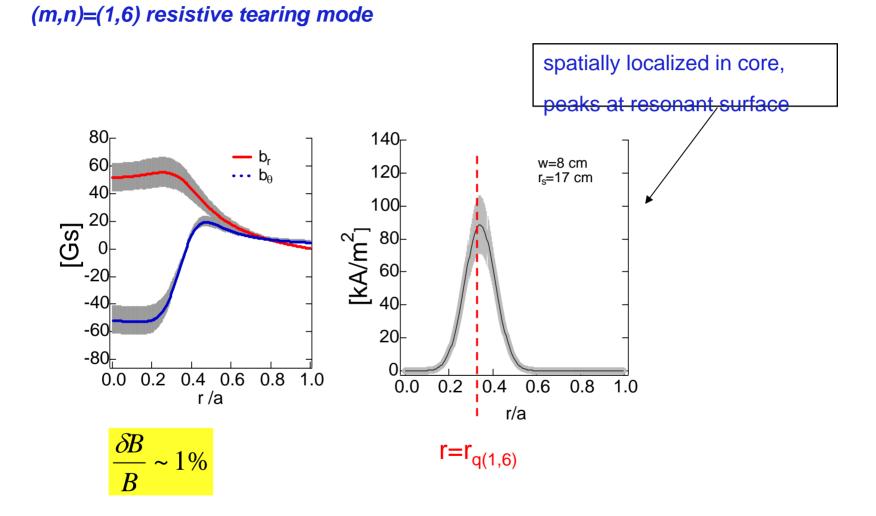
Loop between polarimeter chords is equivalent to a Rogowski coil measurement

Ding, Brower et al. PRL (2003)

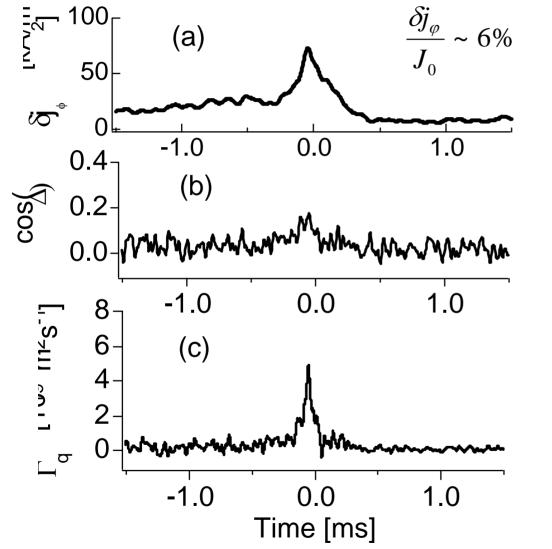


Ζ

Measured Magnetic and Current Density Fluctuation Profiles



Magnetic Fluctuation-Induced Charge Flux



(m,n)=(1,6) tearing mode

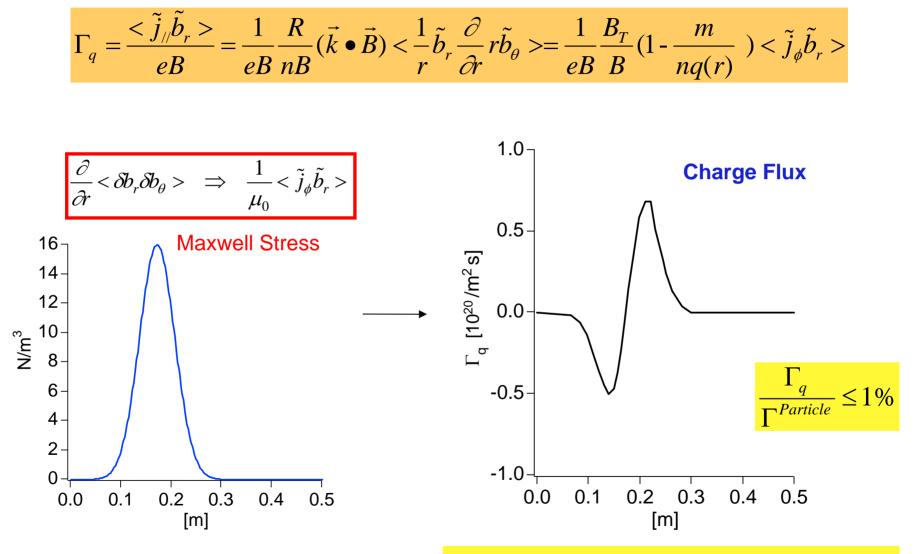
 $\delta \mathbf{j}_{\phi} \& \delta \mathbf{b}_{\mathbf{r}}$ peak at crash

Phase deviates from $\pi/2$ at crash

$$\Gamma_q \neq 0$$
 at crash

non-ambipolar flux

Measured Charge Flux at sawtooth crash in MST



Charge flux is radially localized and changes sign across resonant surface

Charge Transport and Radial Electric Field

$$\frac{\partial \rho}{\partial t} + \nabla \bullet \vec{J} = 0, \quad \nabla \bullet \vec{E} = \frac{\rho}{\varepsilon_0} \quad \Rightarrow \\ \frac{\langle \tilde{j}_{//} \tilde{b}_r \rangle}{B} \longrightarrow$$

$$\varepsilon_0 \frac{\partial E_r}{\partial t} = \sum_j q_j \Gamma_r^j$$

1~4 [A/m²] at the core (FIR Faraday)

 $\Delta \tilde{E}_{r} = \int \frac{\langle \tilde{j}_{//} \tilde{b}_{r} \rangle}{\varepsilon_{0} B} dt$

Leads to a huge electric field, ~50 MV/m in core

However, shielding occurs due to ion polarization current

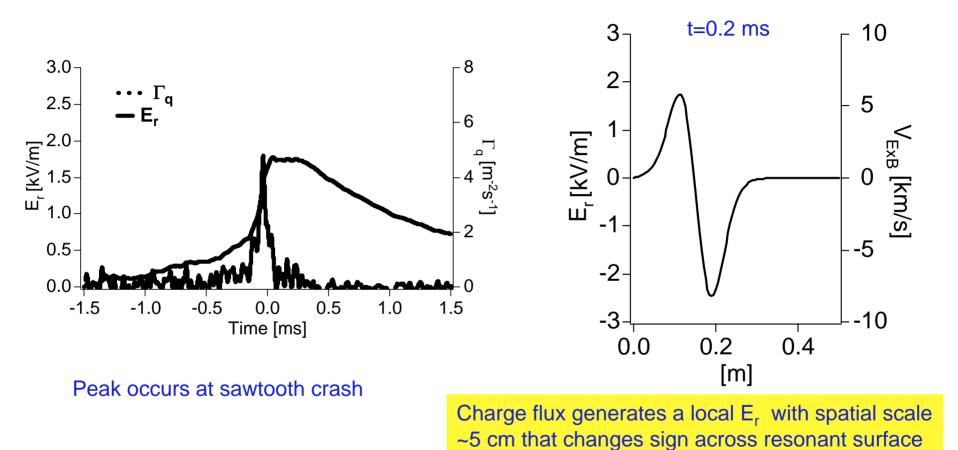
$$\sum_{j} q_{j} \Gamma_{j}^{r} \approx -\varepsilon_{0} \left(\frac{c}{V_{A}}\right)^{2} \frac{\partial E_{r}}{\partial t} - \frac{\langle \tilde{j}_{j/} \tilde{b}_{r} \rangle}{B} - \frac{\mu}{B} \nabla^{2} V_{E \times B}$$

Ion polarization driftmagnetic charge
fluxclassical charge flux
(damping from collisions)Classical charge flux arises from radial flow due to FxB drift
F viscous force perpendicular to B
μ perpendicular viscosity coefficient
V_{ExB} fluctuation-induced mean flow

Radial electric field is established due to non-ambipolar transport,

but electric field is reduced by 10⁴ due to shielding by the ion polarization drift.

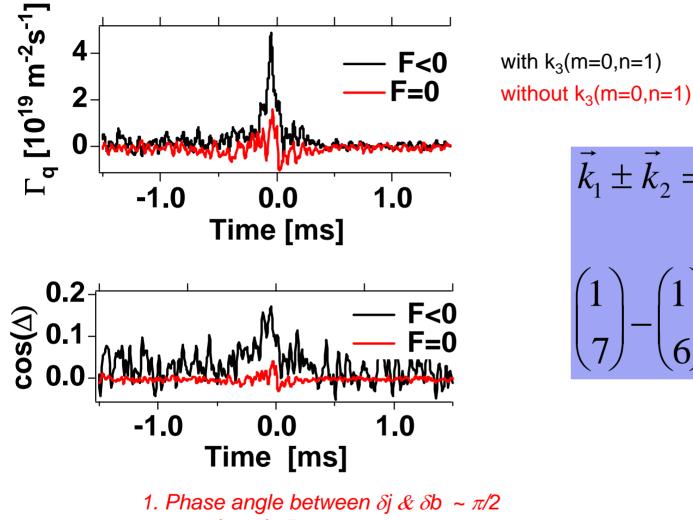
Localized Radial Electric Field and ExB Flow



- (1) ExB generates flow and flow shear
- (2) Flow is toroidally and poloidally symmetric (m=0,n=0) *zero-frequency zonal flow*
- (3) No net momentum change

Charge transport and mode-Mode Coupling

 $k_{1} \pm k_{2} = k_{3}$



2. Γ_a reduced x5

Charge transport maximum during nonlinear mode-mode coupling

Measurements indicate the following:

