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Recent experimental results in C-mod (J. E. Rice et al) and DIII-D (deGrassie et al) indicate that tokamaks have an
intrinsic source of toroidal rotation with an inward or pinched flow. This has motivated us to carefully re-examination
the formulation of toroidal angular momentum and poloidal rotation continuity equations found in Staebler 2004[1]
paper. Our work provides a more explicit formulation for evaluating the turbulent components with the GYRO
gyrokinetic code [2] simulations in real tokamak geometry. While GYRO with finite parallel velocity shear providing
a Kelvin-Helmholtz drive has  been simulating toroidal angular momentum transport since 2003, the radial flow of
toroidal angular momentum is now broken into components from the radial-parallel, and radial-perpendicular stress
tensors, as well as the convective flow of toroidal angular momentum to better understand the origin of  pinched flows
and how they are affected by ExB velocity shearing. Previous quasilinear estimates in slab geometry treating parallel
and ExB shear independently found pinched flows possible[3]. Parallel velocity shear and perpendicular ExB shear are
of course  physically related via radial force balance and the ion pressure gradient profile. Finite parallel velocity (not
just sheared parallel velocity) has recently been added to test a possible additional source of pinching in toroidal
geometry[4]. Mapping the parametric dependence of core toroidal angular momentum transport and pinch conditions
is our key focus. We also use GYRO to evaluate a possible source of toroidal angular momentum from the small non-
ambipolar component of radial magnetic flutter particle flow. In the core at least, the turbulent viscose transport and
source forcing are expected to be small compared to the strong neoclassical magnetic pumping which drags the
poloidal rotation to the neoclassical level. However a key point of Ref. 1 is that turbulence can provide some shift in
the neoclassical poloidal rotation. We use GYRO simulations to determine the size of the shift at finite rho-star.

[1] G.M. Staebler, Phys. Plasmas 11 (2004) 1064
[2] http://fusion.gat.com/theory/Gyro
[3] R.R. Dominguez and G.M. Staebler,  Phys. Fluids B5 (1993) 3876
[4] A. G. Peeters, C. Angioni, D. Strintzi, "The toroidal momentum pinch velocity" submitted to PRL Nov 2006

Abstract



• Heuristic description of intrinsic toroidal rotation and momentum pinches

• GYRO verification of ExB shear pinch and finite parallel velocity pinch

• Gyrokinetic formulation of toroidal angular momentum transport and poloidal rotation

Outline



• Toroidal momentum continuity equation:

Actually we need to consider the flux surface average of toroidal angular momentum
(TAM) continuity                  , but such details are suppressed.

• TAM is a conserved quantity. For intrinsic toroidal rotation with no internal
sources,                            the "source" of the momentum is in the banana orbit loses
at the edge

• At steady state:

At some earlier time                 and toroidal angular momentum flowed into the core
r< a until it starts to flow out               . The edge is both a source and sink (wall
neutral CEX).  At steady state                , we are looking for the existence of a null
transport flow state:                               with finite values of       and                  .

• In the DIIID case                  and             peaked near r~a/2 [i.e.                        ]

Heuristic description of intrinsic toroidal rotation
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• Descriptive (heuristic) transport flow model verified by GYRO simulations:

At steady state, the core (even with peaked density profile) will be in "null" plasma
flow state              and positive only close to edge recycling.
[In any case we ignore convection here.]

•  In toroidal geometry  finite       terms in the curvature drifts

A. G. Peeters, C. Angioni, D. Strintzi, "The toroidal momentum pinch velocity"  PRL 2007,

show                 in an ITG adiabatic electron quasilinear model allowing a pinched
                 state with

Heuristic description  (cont’d)
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• In slab geometry  (and now GYRO verified in toroidal geometry)

R.R. Dominguez and G.M. Staebler,  Phys. Fluids B5 (1993) 3876

showed with an ITG-TEM quasilinear model how ExB shear (       -term) can allow
null             flow states and

[G.M. Staebler et al, BAPS 46 (2001) p221-LP1 17],  "Heating Induced Toroidal Rotation
and Other Consequences of Anomalous Momentum transport"
argued

"spontaneous toroidal rotation during heating without external torque was shown
to follow from the off diagonal nature of the toroidal viscous stress"

[G.M. Staebler TTF 2001 poster]

Note the "stress"                    is same as the radial flow of toroidal momentum.

Heuristic description  (cont’d)
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• Set                  and assume for simplicity              constant in r
Integrating the continuity equation at null flow

If the edge rotation is small, the intrinsic toroidal rotation is diamagnetically scaled,
i.e.  driven by pressure and temperature gradients and proportional to rho-star.

Note even with                    :

• Assume                   and                    , there is a similar solution:

• We don’t really need the pinch effects               and                 to get intrinsic
toroidal rotation, since radial flow is driven by               not

How does intrinsic toroidal rotation result?
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GYRO simulations verify the pinch effects

GA standard case with kinetic electrons:  q=2,s=1, a/LT=3,  a/Ln=1,
The particle pinch                              has been “subtracted”.

Note that the large parallel rotational shear states                                     as
in DIIID unbalance injection have the “normal”                       (previously
reported in GYRO publications) are far from the pinched (or null) flow
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ExB shear quench

• ExB shear (independent of sign) has usual quench on all low-k transport channels.

• Momentum (and energy) diffusivity increases slightly with parallel velocity shear.



Edge source constraint

• While it  appears the null flow profiles could have both co- and counter-
current intrinsic rotation as a function of radius                                    the
edge source is only co-current.

• Since toroidal angular momentum is conserved
must be co-current.

• Ion orbit losses produce co-current momentum into as does the Debye
shear Er   ExB rotation.

• Hopefully the edge boundary condition           is “small” because we can
at best put bounds on it:
                                                  ;                ;                ;          ;           ->co
                           ;                 ;                                             ;               ->co

Empty loss cone gives
and the              projection is much smaller.

In this discussion, it is important to remind that the source is taken to be
outside          , i.e.                               . This likely means that             i. e.
the top of the pedestal radius.
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Diamagnetically scaled intrinsic toroidal rotation

• Getting the correct non-monotonic profile of         will require a very accurate
transport model.  Getting the finite     curvature drift pinch effect in TGLF is straight-
forward.  Getting the ExB shear properly installed in the TGLF  θ−dependent
quasilinear mode function is non-trivial.

• However the diamagnetic scaling is testable:  Assuming

• Using a collisionless-electrostatic-gyroBohm scaling

• For                                  , the shear rates                will much smaller than high-n
turbulent growth rates            in ITER.  [May be helpful for stabilizing RWM?]
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Gyrokinetic formulation of toroidal angular momentum transport
and poloidal rotation used in GYRO

G.M. Staebler,  Phys. Plasmas (2004) 1064

• The toroidal angular momentum continuity equation is,
(ignoring small or explicitly zero magnetic flutter effects):

The perpendicular stress         is significantly different from zero with ExB shear.
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Gyrokinetic formulation of toroidal angular momentum transport
and poloidal rotation used in GYRO  (cont’d)

• The poloidal momentum balance is:

(second line with         nearly cancels)

The “magnetic pumping” neoclassical viscosity dominates, dragging the poloidal
velocity to the neoclassical value with a small turbulent shift (Staebler 2004):

                                                         where

                                                          where

• For              GYRO found (for GA-std)
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Gyrokinetic formulation of toroidal angular momentum transport
and poloidal rotation used in GYRO  (cont’d)

• The radial electric field                               is given by :

where

• The ion “omega-star” and “omega-drift” terms for a parallel drifted Maxwellian

where                                      and
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Summary
• Intrinsic (or spontaneous) toroidal rotation driven by pressure and ion
temperature gradients has been long predicted  from the ExB shear pinch of toroidal
momentum transport (Dominquez and Staebler 1993 & Staebler et al 2001).

• An additional finite parallel velocity - curvature pinch effect has been proposed
(Peeters, Angioni, Strinzi 2007)

• GYRO has confirmed both pinch effects can result in a “null” radial flow of
toroidal momentum                        at low parallel velocity shear  whereas the
normal                            obtains at high parallel velocity shear.

• If                               the intrinsic toroidal rotation with “null” radial flow will
have a diamagnetic scaling                                 leading to ExB shear rates
much smaller than high-n turbulent growth rates            in ITER.

• The edge source constrains the total intrinsic toroidal angular momentum to be
co-current, but we can not predict the size of           without the source details.

• Accurately predicting the (often) non-monotonic radial profile of the intrinsic
toroidal rotation  will be a challenge for theory based transport code models.

• GYRO has shown the turbulent shift from neoclassical  poloidal rotation is small.
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