Investigation of Global Momentum Confinement Times on DIII-D

By Wayne Solomon

In collaboration with K.H. Burrell, R. Budny, J.S. deGrassie, R.J Groebner, J. Kinsey, D. Mikkelsen, C.C Petty, S. Scott, M. Zarnstorff

12th US-EU Transport Taskforce Workshop San Diego, CA 19 April 2007

Momentum Transport Was Investigated in ELMing Hmode plasmas

- Elevated q_{min} conditions stay above 1 for ~ 5 s
 - no sawteeth
- Torque scans performed at constant β_N
 - Use plasma control system (PCS) beta feedback control
 - Beta feedback as proxy for T_i
- As vary number of counter sources, PCS adjusts number of co-sources to maintain requested beta level

Intrinsic Rotation Profile Can Be Interpolated From the Torque Scan Data

Total Mechanical Angular Momentum Reveals Non-Linear Response to Total Neutral Beam Torque

- Non-linear response of angular momentum to applied torque suggests momentum confinement time is dependent on torque
- Simple quadratic fits data well, implying a linear degradation of momentum confinement with torque

$$L = AT - BT^{2}$$

$$\tau_{\phi} \sim L/T = A - BT$$

Near Zero Rotation Profile With Net Neutral Beam Torque Suggests an Anomalous Torque Source

From momentum balance equation

$$mnR\frac{\partial V_{\phi}}{\partial t} = T + \nabla \cdot \Gamma$$

$$\Gamma \sim mnR\left(\underbrace{\chi_{\phi}}_{diffusion} \frac{\partial V_{\phi}}{\partial r} + \underbrace{V_{\phi}V_{pinch}}_{convection}\right) + \dots$$

- If V_o is zero everywhere and constant, then net torque to the plasma must be zero
- This situation is nearly realized in this example, but there is one net counter source on
- "Anomalous" torque source

Precise Anomalous Torque Profile Can Be Inferred From Torque Scan Data

- Torque scan provides opportunity to interpret "anomalous torque" corresponding to the intrinsic rotation profile.
- Anomalous torque closely matches torque from approx one net co-source
- Plasma rotates as if there was an extra co-source worth of torque!

Global Momentum Confinement Time Can Now Be Computed With Knowledge of Anomalous Torque

• Equation for momentum confinement time becomes

$$au_{\phi} \sim \frac{L}{T_{_{NBI}}} \quad \rightarrow \quad \tau_{\phi}' \sim \frac{L}{T_{_{NBI}} + T_{_{an}}}$$

- Assumes anomalous torque constant
- Clear improvement in momentum confinement time as total torque to plasma is reduced.
- Values on x-axis shift significantly due to large anomalous torque
 - never really reach counter torque (consistent with rotation always positive)

Angular Momentum Relaxation Time Comparable to Global Momentum Confinement Time

 Can also analyze the dynamic behavior when step torque from one value to another

$$\frac{dL}{dt} = T(t) - \frac{L(t)}{\tau_{\phi}^{relax}}$$

- Torque deposition occurs over collisional slowing down time
- Integrate model and solve for τ_{0}^{relax}
- Model fits momentum decay adequately
- Relaxation time reproduces similar trend as global momentum confinement time

Momentum and Heat Diffusivities Show Different Dependence on Toroidal Rotation

 Momentum diffusivity solved by TRANSP from momentum fluxes

$$\Gamma_{\phi} = mnR\chi_{\phi} \frac{\partial V_{\phi}}{\partial r}$$

 Correct for intrinsic rotation / anomalous torque

$$T' = T + T_{an} \Longrightarrow \chi_{\phi}' = \left(1 + \frac{T_{an}}{T}\right) \chi_{\phi}$$

- Momentum diffusivity increases with rotation at all radii
- Momentum and heat diffusivities comparable at large rotation
- Possible optimal rotation at edge for heat diffusivity

Summary

- At moderate β_N in H-mode discharges, plasma shows significant "intrinsic" co-rotation, near balanced NB injection
 - Central rotation under such conditions >100 km/s
 - Maintain co-rotation even with significant net counter NB injection
 - Must be considered for momentum confinement studies
- Momentum confinement degrades with increase to net torque
 - Comparable to degradation in energy confinement with power
- Momentum relaxation time comparable to momentum confinement time
 - Also shows similar dependence on torque
- Momentum and heat diffusivities exhibit different responses to changes in toroidal rotation

