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“Rapid frequency-sweeping”

s - “Rapid frequency-sweeping” means
sufficiently fast as not to be due to changes
In background plasma parameters

* Interpretation of these events in terms of
phase space structures in the particle
distribution function f(x,v,t)

In this talk, focus on:
o Strongly-driven, non-perturbative regime
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Motivation

K/ Context:
* Frequency-sweeping events are typically driven
by fast particles —

e.g. NBI, fusion-produced alphas

. Applications:

* Develop our understanding of fast particle-driven
Instablilities and transport

e Use as a diagnostic: sweeping parameters used
to deduce plasma parameters

« Apply frequency sweeping mechanism as an
energy transfer mechanism (alpha channelling)
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Diagnostic example:

Deducing internal mode amplitude from sweeping

parameters
* Theoretical models predict sweeping rate in terms of

parameters such as collisionality and gives indication of
Internal mode amplitude.
* Prediction for a TAE mode in a tokamak using HAGIS code

MAST magnetic fluctuations HAGIS simulation
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Pinches, Berk, Gryaznevich, Sharapov & JET-EFDA team, PPCF 46 S47 (2005).
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(Non-)Perturbative modes

“Perturbative” or “nonperturbative” describes level
of Impact of fast particles on modes:

e Perturbative: basic mode structure and
frequency given by linear theory of background
plasma; kinetic component primarily effects
growth rate

 Nonperturbative: (“Energetic Particle
Mode”/EPM) linear mode structure and
frequency strongly effected determined by fast
particle population
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(Non-)Perturbative modes

TAE-like sweeping modes can be classified
by considering birth frequency
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MAST shot 12449, even mode numbers only
Gryaznevich & Sharapov, Nucl. Fusion, 46 S942 (2006).
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Model equations

« Single distribution f(x,v,t) electrostatic model
with source injection and collisions:

of  Of
E+V&+ E— = V(f - beam (V)) V(f B thermal (V))

* Field evolution equation includes
background damping term acting in a
linear resistive manner:

E [ (f-1,)do=—y,E

 One dimensional —— computationally cheap
(although still parallelized)
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Model equations

 |n absence of waves source and ‘classical’ relaxation
would achieve a highly unstable distribution function F,

o With F, chosen as, F...,(V)=Fema vV —V,) , @ NON-
perturbative unstable mode would arise if distribution
could achieve classically predicted level.

e Such a distribution would not be achieved as plasma will
find a mechanism to relax.
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Field evolution g, (o.t)
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Frequency sweeping approximately linear with time dw ~ ot
(contrast to perturbative case for which 5w ~ 5t1/?)

Asymmetric
Both axes are normalized to underlying wave frequency.
Collisionality v = 0.0002; damping rate y4, = 0.4




Simulation

THE UNIVERSITYW

*IFS

Comparison of Simulation with Experimental Patterns
MAST shot 11005
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Phase space dynamics
a snapshot at t = 9750
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Distribution function f(x,v) Spatial average fy(v)
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Complex phase space holes are created through resonant

Interaction with the wave — arrows in plot of f,(v) correspond
to the modes’ phase velocities.

The spatial average is remaining far from equilibrium Fg4(v)
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System persists near marginal stability
(i.e. a state in which most unstable mode is marginally stable)
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Conclusions:

e Distribution maintains marginally-stable state through the
frequency sweeping mechanism

» Resulting distribution energy significantly smaller than what
would be predicted without hole evolution (~ 25% In our
case)
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Fast Chirp theory

Consider response of background plasma to a trapping
region in phase space (a ‘bucket’) that produces a charge
density o4 Where distribution function inside bucket
taken as the linear phase velocity of marginally stable
‘candidate’ distribution

Reactive background plasma response determined from
linear dielectric function

k2‘S.r (a)L + 5(())¢ — pbucket
Dissipative response replaced by bucket’'s charge density
(new theoretical feature: maintain precise dependence of ¢
to ow, for candidate distribution)

Background dissipation extracts power from wave.
Alternate response to damping is frequency sweeping to
extract energy from bucket. Here downward for a clump
and upward for a hole
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Continuation of Analysis
- To feed background dissipation, power is released by
bucket through frequency sweeping mechanism.
* Frequency shift oo = w - @,
déo® 1 , o |d (o ,K)| o
= —Q }/
d 3 ° a)[ ow jgr(a),k)
Mode amplitude is best measured in terms of trapping

frequency of deeply trapped particle (universal measure
of trapping effect which scales to nearly every

Hamiltonian system)
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Evolution of single frequency-sweeping

structure

Frequency Mode amplitude

0.06

0.04

Mode amplitude

0.02

Mode phase velocity

a500 10000 10500 9500 10000 10500
Time Time

« RED curve extracted from simulation
« GREEN curve from non-linear reduced theory
* Only fitting parameter is the time offset (common to both
plots)
» Good agreement despite theory not accounting for
 hole-hole interaction
e trapping/untrapping of particles
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Discussion

 Deeper insight into hole or clump sweeping dynamics achieved

Linear frequency sweeping dw ~ &t of hon-perturbative modes
System persists near marginal stability

Significant reduction in stored fast particle energy

 Quantitative understanding of direction of rapid sweep and
enhancement of saturated level

» ~ 50 enhancement of power transfer of beam distribution to
background plasma as compared to estimate inferred from
original theory (which is based on a perturbative solution)

 Gives viability to prospect of channeling through the
Intermediary of phase space structures

« We will attempt to understand the power limitations that can
maintain sweeping as the relaxation mechanism, as opposed to
more violent relaxation with non-linear mode overlap, even
when additional linear modes are somehow guenched (an
assumption of this modeling)
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