Measurement of fast ion losses from JET: preliminary results

K. W. Hill,¹ D. Darrow,¹ F. E. Cecil,² R. Budny,¹ V Kiptily,³ M. Reich,⁴ T. Johnson,⁵ A. Salmi,³ and JET-EFDA contributors

¹ PPPL, Princeton, NJ, USA
² Colorado School of Mines, Golden, CO, USA
³ EURATOM/UKAEA Fusion Association, Culham Science Centre, UK
⁴ Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Germany
⁵ Assoc. EURATOM-VR, Alfven Laboratory, Royal Institute of Technology, Stockholm, Sweden

Outline

Introduction

- Motivation
- Faraday Cups- energy, radial, poloidal, good time resolution
- Scintillator Probe pitch angle, gyroradius, modest time resolution

Analysis of losses in TF Ripple Experiments

- NB fast ion studies
- TF Ripple Plasma Commissioning
- *H-mode Ripple studies*
- TF Ripple in Advanced Tokamak scenarios

Summary

Fast ion loss measurements are important

- Most auxiliary heating involves fast ions
 - NBI: < 160 keV</p>
 - ICH tail: < 5 MeV</p>
 - $-\alpha$ particles: 3.5 MeV
- Loss means inefficient heating
- Concentrated loss may damage first wall
- Features of loss reveal details of physics within plasma
- Important to measure losses in ITER -> Faraday cups
 - Bakeable
 - Radiation hard
 - Low radiation noise
 - Large dynamic range

A Faraday-Cup array was installed in JET (Octant 7)

12th US-EU TTF Workshop, San Diego, CA, Apr 18, 2007

ΡP

Faraday cups are positioned poloidally and radially

- Curved beam mounted on vessel wall below midplane
- 5 "Pylons" mounted on beam poloidal resolution
- Each pylon contains up to 3 Faraday cup modules - radial resolution

FC detector orientation

Thin foil Faraday cups allow energy resolution

Detector composed of multiple thin metal foils

- Metal foils separated by mica foils
- Ion energy determines deposition depth
- Ion current measured for each foil individually
- Current vs. depth gives energy distribution (ΔE~30–50%)

Log amplifiers allow 9-decade current-measurement 100 pA - 10 mA

Response of log amp to 9-decade calibration current source

Deuterons with E < 0.78 MeV don't reach 2nd foil

Energy ranges (MeV) for lons in JET KA-2 foils

lon	proton	deuteron	triton	Helium - 3	alpha	
Standard detector						
1 (2.5 um)	0.0 - 0.50	0.0 - 0.54	0.0 - 0.53	0.0 - 1.58	0.0 - 1.58	
2 (2.5 um)	0.68 - 0.98	0.78 - 1.18	0.78 - 1.25	2.26 - 3.49	2.35 - 3.68	
3 (4.0) um	1.15 - 1.52	1.35 - 1.83	1.45 - 2.21	4.00 - 5.42	4.24 - 5.87	
4 (2.5 um)	1.65 - 1.83	2.00 - 2.26	2.24 - 2.53	5.81 - 6.57	6.32 - 7.17	
15 MeV p dete	ector					
1 (2.5 um)	0.0 - 0.50	0.0 - 0.54	0.0 - 0.53	0.0 - 1.58	0.0 - 1.58	
2 (2.5 um)	0.68 - 0.98	0.78 - 1.18	0.78 - 1.25	2.26 - 3.49	2.35 - 3.68	
3 (4.0) um	1.15 - 1.52	1.35 - 1.83	1.45 - 2.21	4.00 - 5.42	4.24 - 5.87	
4 (2.5 um)	1.65 - 1.83	2.00 - 2.26	2.24 - 2.53	5.81 - 6.57	6.32 - 7.17	
5 (25 um)	1.94 - 3.51					
6 (75 um)	3.74 - 6.73					
7 (500 um)	6.76 - 17.83					
8 (100 um)	17.85 - 19.46					

Hi E res

1 (1 um)	0.022
2 (1 um)	0.46 - 0.67
3 (1 um)	0.78 - 0.91
4 (1 um)	1.05 - 1.15
5 (1 um)	1.29 - 1.39
6 (1 um)	1.50 - 1.59
7 (1 um)	1.70 - 1.78
8 (1 um)	1.87 - 1.95

Some Faraday cups have special configurations

Θ_{pol} ,Z	Inner (R)	Middle (R)	Outer (R)
9° Z= 10 cm	standard configuration	standard	standard
15° Z= - 11 cm	standard	T/C*	
21° Z= - 31 cm	standard		
27° Z= - 50 cm	15-MeV protons	standard	standard
33° Z= - 68 cm	High E resolution		

Total: 44 signals. Conduit can accommodate up to 46 wires. *T/C designates a position with a single foil and thermocouple

Only front foils respond to NBI ion loss

Sawteeth modulate ICRH ion loss

• 3 MW ICRH

- Energetic ions penetrate to deeper foils
- Some log amplifiers saturated by large currents

Scintillator Probe in JET (Oct.4)

SP located in the lower limiter guide tube; coordinates of the SP: R = 3.834 m , Z = -0.277 m

Scintillator probe provides pitch-angle and gyroradius resolution

Ion selection is defined by the slit-geometry and magnetic field

) B

- energy range selection
- pitch-angle range selection

Particle energy is linked to gyroradius of fast ions :

$$r \propto \sqrt{mE_{\perp}} / B_T Z$$

Observation of lost ions:

- particles hit surface of the scintillating material (P56, τ= 2 m\$) ^{*}_B
- light emission (611nm) allows to use conventional CCD camera (512x512 pixel, 10-50 Hz) and PMT detectors (4x4 PMT array, rate >1 kHz)

Scintillator probe provides 2D lostion images (pitch-angle & gyroradius)

12th US-EU TTF Workshop, San Diego, CA, Apr 18, 2007

KA3 detects particles with gyro-radius from 30 mm to 140 mm

Entrance aperture 1-m Au foil stop slow-energy ions (e.g. NBI): H, D < 150 keV; He < 250 keV

Grid lines indicate pitch angle and gyroradius

Collimator shape optimized in iterative process between CAD-design and orbit calculations using real model co-ordinates. 1-µ Au foil is installed to stop NBI-ions Scintillator probe

Gridlines indicate mesh of particle impact positions where they have constant pitch angle and gyro-radius respectively

Development of the software for data evaluation and PPF generation is almost finished. (M.Reich, IPP)

Ion losses were analyzed in TF Ripple Experiments

- The 1st foil signals of the FC system were used for analysis of NBI and low-energy ion losses in the following experiments
 - TF Ripple Plasma Commissioning
 - TF Ripple effect on NB fast ions
 - H-mode Ripple studies in low triangularity plasmas
- The 1st foil currents were integrated over 1-s interval
- Fusion products and MeV-ion losses were analyzed with Scintillator Probe in experiments on ripple effects in Advanced Tokamak scenarios

Analysis of four experiments was done

Commission de	ning - Restart TF elta I imbalance(kA)	t=57-58s	H-mode	- S1		t=60-62s
69178	42		Imax/Imin delta			
69179	42 63.8/22.1					
69180	0 42.5/43		69625	42/42		42/42.5
69181	27		69631	0.73	0.5	
69186	27		69632	0.73	0.5	
69187	0		69633	0.64	0.7	
69198	0		69635	0.52	1	55.3/29.4
69197	27					
69199	0					
69200	27					
NB fast ion	<mark>s-H/M</mark> t= 57-58s, 59.5	-60.5s, 62.5-63.5s	AT scen	arios - S	2	t=45.025s

	Imax/Imin	delta	
69605	43/42	0.03	42.3/42.8
69606	47/38	0.4	47/38
69607	52/33	0.8	51.7/33.4
69608	56.6/29	1.1	
69610	61/24	1.5	61.4/24.2

AT scena	arios -	S2	t=45.025	S
69685	1	0	no ripple	42.7/43.1
69687	0.5		ripple	56.7/43
69689	1	0	no ripple	42.7/43
69690	0.5		full ripple	56.7/43

ELM amplitude reduced by ripple

TF Ripple - NB fast ion studies (lan Jenkins)

$B_t = 2.2 \text{ T}, I_p = 2.1 \text{ MA}, \delta = 0 - 1.5\%$

NOT CHECKED/63 Ymax = 2.689E+14Ymin = 0.000E+00Ywint= 8.836E+14 PP/NBI/PTOT NOT CHECKED/9 Ymax = 1.698E+06Ymin = 0.000E+00Ywint= 9.220E+06 FGC-CONV<AMP: 100 Ymax = 4.305E+04Ymin = 1.988E+04Ywint= 1.242E+06 PP/MAGN/IPLA NOT CHECKED/4 Ymax = -1.018E + 02Ymin = -2.088E + 06Ywint=-5.923E+07 BTORFIFI D NOT CHECKED/60

69608

Ymax = 0.000E+00Ymin = -2.278E + 00Ywint=-7.305E+01

Front foils respond to NBI injection

TF Ripple - NB fast ion studies (2)

Delayed losses relative to sawtooth crashes

TF Ripple - NB fast ion studies (3)

Sawtooth frequency varies with ripple value

TF Ripple - NB fast ion studies (4)

NB ion losses depend on ripple value

27° below midplane

33° below midplane

In the case of the normal bank 80-keV NBI the losses are a bit higher than for the tangential bank 130-keV NBI. In the off-axis case the losses are intermediate

TF Ripple - NB fast ion studies (5)

Losses show a poloidal dependence

Marked front-foil signal and ELMS during NBI

TF Ripple Plasma Commissioning (4)

Losses monotonically decrease with ripple value

TF Ripple Plasma Commissioning

Losses monotonically increase with NBI power

TF Ripple Plasma Commissioning (2)

Losses Increase with $D\alpha$

TF Ripple Plasma Commissioning (3)

$\text{D}\alpha$ signal decreases with ripple amplitude

Ion losses higher during ELM event

Analyze losses during vs between ELMs

Front foils respond to NBI and ELMs - H-mode

H-mode Ripple studies (low triangularity)

Poloidal and radial dependencies of losses

The losses decrease with ripple amplitude except for the measurements with largest ripple:

ELMs vs. Ripple loss(?)

TF Ripple in AT scenarios (4)

No ripple

TF Ripple in AT scenarios (5)

100

80 60

40

20

-20

-40 150

100

50

-50

200

150

100

200

150

100

43

44

Pulse No. 69689 No ripple There are no losses with narrow pitch-angle distribution @ $\theta \approx 55^{\circ}$ (ICRF power is too low?) Pulse No. 69688 Ripple: $I_{min} / I_{max} = 0.5$ A component with $\theta \approx 75^{\circ}$ was observed in the off-axis case as well

45

 $R_{G} = 11 \text{ cm}$

 $R_{G} = 13.5 \text{ cm}$

12th US-EU TTF Workshop, San Diego, CA, Apr 18, 2007

Summary (1)

- Faraday cup and scintillator probe were used for measurements of fastion losses of the keV and MeV-ranges in the JET ripple experiments
- A significant dependence of losses on Dα was found, suggesting that substantial ion losses may take place due to ELMs
- In the <u>H-mode experiments</u>
 - ion losses decrease with δ except at the largest ripple value, where the increase suggests a competition of loss mechanisms (ELMs vs. Ripple)
 - there are significant z- and R-dependencies of the losses
 - there is a monotonic increase of the losses with NBI power
 - losses with normal bank NBI are higher than in the tangential bank case

- In the <u>NB fast ion studies</u>
 - the sawtooth frequency depends on the ripple value
 - delayed losses relative to the sawtooth crashes
 - there is an increase of losses with δ !
 - there is no strong link with the NB injection type
- In the <u>AT scenarios</u>
 - MeV-ion losses (fusion products and ICRF accelerated ions) were observed
 - there is evidence of MeV-ion redistribution due to the ripple

Future work

- Look at broader range of ion-loss data
 - MHD
 - TAEs
 - ELMs
- Compare ripple-experiment measurements with simulations from TRANSP/ORBIT, ASCOT - R. Budny, R. White, T. Johnson, A. Salmi, others
- Differentiate ELM vs ripple-loss contributions
- Correlate Faraday-Cup data with Scintillator-Probe data

Backup slides

#69649 w/ and w/o ripple - A. Salmi

Without ripple:

Initial torque of 18.4 Nm goes: to *wall* 0.2 Nm to plasma through *collisions* 4.8 Nm to plasma through *JxB force* 13.6 Nm to *coils* 0 Nm

1% of ripple induces \sim 20% of energy losses of NBI mostly outside rho_{pol} 0.7

With ripple:

Initial torque of 18.4 Nm goes: to *wall* 3.1 Nm to plasma through *collisions* 4.6 Nm to plasma through *JxB force* -2.1 Nm to *coils* 12.8 Nm

TF Ripple in AT scenarios (E. Joffrin)

No ripple 12th US-EU TTF Workshop, San Diego, CA, Apr 18, 2007

TF Ripple in AT scenarios (3)

200 150 200 100 150 oixel 50 100 $R_{G} = 11$ 0 50 cm -60 150 200 100 150 pìxel 50 100 $R_{c} = 13.5 \text{ cm}$ 50 -50 l 44 45 time Pulse No. 69685

MeV-ion redistribution due to the ripple

Pulse No. 69685 No ripple There are losses with narrow pitch-angle distribution @ $\theta \approx$ 55° (deuterons?)

Pulse No. 69687 Ripple: $I_{min} / I_{max} = 0.5$

Pitch-angle distribution is broader, and a component with q » 75° was observed

