Fast-ion profiles in quiet plasmas

• FIDA* introduction

 Magnitude and shape comparison

Parametric
 dependences and
 corroborations

Spatial profiles

Y. Luo, W. W. Heidbrink, E. Ruskov University of California, Irvine

K. H. Burrell

General atomics

W. M. Solomon

Princeton University

*Heidbrink, PPCF 46 (2004) 1855; Luo, RSI 78 (2007) 033505.

D_a light from neutralized fast ions

- Charge exchange light S_{FIDA} n_bn_f<σv_{rel}>. S_{FIDA}/n_b: FIDA density.
- Wavelength determined primarily by Doppler shift. One velocity component measured.
- Cross section depends on relative velocity.
 Spectral shape distorted.

FIDA fiber views

- Dedicated 2-channel system measured full spectra
- Partial spectra from 7 vertical channels on selected discharges

Vertical views measure one component of perpendicular energy

Monte Carlo code simulates expected signal

Both magnitude and shape of spectra agree well

- Intensity calibration allows direct magnitude comparison.
- For the 180 cm chord, simulated spectrum is scaled by 0.75 to get the agreement. 20-30% magnitude difference is reasonable provided errors in data processing, intensity calibration, plasma profiles input to TRANSP and the simulation code, etc.
- Excellent shape agreement validates TRANSP fast-ion velocity space model and atomic cross sections in the simulation code.
- The result benchmarks both the simulation code and the diagnostic.

Irvine

Classical theory of fast ions

 Fast ions are born with an initial energy and pitch by neutral beam injection

• Fast ions slow down through coulomb collisions with electrons and thermal ions

• Fast ions pitch angle scatter through coulomb collisions with thermal ions

• Fast-ion density is proportional to the product of the beam power and the slowing down time, which is $P_{inj}f(T_e)/n_e$

FIDA signal increases with beam power and decreases with left fraction

 FIDA density (FIDA/n_b) is proportional to fast-ion density

 P_{inj}/n_e is also proportional to fast-ion density if T_e held constant

• Electron temperature is held to be between 2 keV and 3 keV because of limited database entries

Strong correlation observed between FIDA signal and beam power

Signal increased with right beam source

FIDA signal is less sensitive to pitch-angle scattering than neutral particle analyzer signal

- •The FIDA signal increases with T_e because of the longer slowing down time (higher fast-ion density) and more pitch angle scattering (more perpendicular energy)
- •The FIDA signal is less sensitive because FIDA measures a collection of fast ions in velocity space, while NPA measures a point in velocity space. Neutrons also average in velocity space.

Electron density dependence agrees with a simple model

 The model: product of total neutral density, deposition rate of full energy component, and slowing down time. • All atomic physics neglected, which is legitimate when the ^{5.5}velocity distribution doesn't change and only signal level is concerned. One free parameter in the model. Good agreement between the FIDA measurements and the

Neutron diagnostic corroborates FIDA measurements

FIDA relative radial profile agrees well with TRANSP prediction

Fast-ion distributions from TRANSP are dumped to the simulation code.
Simulated profiles are higher as expected at the later time when electron density is lower.

• At the early time, FIDA profile is normalized to the simulated profile.

At the later time, FIDA profile agrees with the simulated profile.
Radial profile of fast-ion pressure inferred from kinetic EFITs (MSE data) are also consistent with TRANSP.

FIDA absolute radial profile is more challenging

• Simulated FIDA profile looks reasonable.

- •The absolute magnitudes are within 30%. Not bad considering all the uncertainties.
- The profile shape doesn't agree with the simulation.
 The difference between CCD channels and Reticon channels

suggests that the intensity calibration is problematic.

• Future prospect is good with careful intensity calibration.

- Excellent spectral shape agreement (Coulomb collision model validated).
- Reasonable magnitude agreement
- Expected parametric dependences
- Corroborated by other fast-ion diagnostics
- Good relative radial profile (beam-ion diffusion coefficient within 0.1 m²/s).

