

Plasma blobs in a basic toroidal experiment: Origin, dynamics and induced transport

Stefan H. Muller^{2,1}

A. Fasoli¹, I. Furno¹, B. Labit¹, M. Podesta¹, G. R. Tynan²

¹Centre de Recherches en Physique des Plasmas Ecole Polytechnique Fédérale de Lausanne, Switzerland

> ²Center for Energy Research University of California of San Diego, USA

Motivation

- Blobs: "Intermittently encountered, isolated propagating structures of increased plasma density"
 - Large bursty events dominate SOL particle transport
 - Localized wall loads may become critical for ITER
- Idea: setup relevant test scenarios in basic experiments
 - Configuration in TORPEX with core-SOL-like transition
 - Exploit better diagnostics

NSTX gas-puff imaging (Courtesy R. Maqueda)

TCV Langmuir probe (Courtesy J. Horacek)

Fluid simulations (ESEL; V. Naulin): Quantitative agreement with LP measurements

TORPEX – Core-SOL-like configuration

20 15 6 10 Density [10¹⁶ m⁻³] ΨH 5 5 z [cm] **EC** 4 3 2 -10 -15 -20└ -20 0 -10 10 20 0 r [cm] **Core-like SOL-like Transition** region region region (slab-like) (source free)

□ R = 1 m □ rf waves □ B ~ 0.1 T □ n ~ 10^{17} m⁻³ □ T_e ~ 5-8 eV □ ρ_s ~ 1-15 mm

CRPP

Magnetic-field topology *different* from tokamak

A Drift-Interchange (D-I) wave propagates vertically upward along outboard profile slope

- Diagnostic: 2D Langmuir probe array
 - 86 tips (here: I_{sat})
 - 4 µs resolution

Blob ejection from wave crests of D-I wave

Quantitative analysis of blob dynamics

Pattern-recognition approach: S. H. Muller et al., PoP 13, 100701 (2006)

- Pos./neg. structures from threshold segmentation ($\delta n > \delta n_{th} / \delta n < -\delta n_{th}$)
- Trajectories from tracking criterion

Statistical analysis of trajectory database

- Spatial abundance of trajectories / average motion patterns
 - Blobs in many aspects similar to tokamak observations

Blob-induced transport

- Instantaneous fluxes during events from ensemble average (arrows)
- Time-average transport by counting "transport events" through test surfaces

Parallel losses: ~5 x 10¹⁸ m⁻²s⁻¹

- Inter-event times distributed exponentially
 - Increasing time constants for increasing radial position

Conclusions

Relevant scenario to test blob models in a basic toroidal experiment identified

- Blobs are observed with *very similar properties* to tokamak observations
- Magnetic-topology change seems *not essential* for blob formation
- Origin of blobs in TORPEX
 - Blobs are sheared-off from elongated wave-crests of a Drift-Interchange wave (Mechanisms? → *Ivo Furno, next talk*)
- Transport properties
 - Fluxes during events **10 x larger** than steady-state parallel losses
 - Time-average effect **10 x smaller** than steady-state parallel losses
- Outlook: use data from tokamak SOLs, basic toroidal devices and linear devices together to validate SOL simulation codes

Pilot chart and death-birth conditional prob.

Clear change in average structure orientation in ejection region

- Deceleration from ~1750 m/s to 1000 m/s along radial propagation
- Conditional birth probability of blobs reaching the far SOL peaks at (-5,-10) cm
 - Blobs travel distances of order of minor radius as coherent structures

