Plasma blobs in a basic toroidal experiment: Origin, dynamics and induced transport

Stefan H. Muller2,1

A. Fasoli1, I. Furno1, B. Labit1, M. Podesta1, G. R. Tynan2

1Centre de Recherches en Physique des Plasmas
Ecole Polytechnique Fédérale de Lausanne, Switzerland

2Center for Energy Research
University of California of San Diego, USA
Motivation

- Blobs: “Intermittently encountered, isolated propagating structures of increased plasma density”
 - Large bursty events dominate SOL particle transport
 - Localized wall loads may become critical for ITER

- Idea: setup relevant test scenarios in basic experiments
 - Configuration in TORPEX with core-SOL-like transition
 - Exploit better diagnostics

NSTX gas-puff imaging (Courtesy R. Maqueda)

TCV Langmuir probe (Courtesy J. Horacek)

Fluid simulations (ESEL; V. Naulin): Quantitative agreement with LP measurements
TORPEX – Core-SOL-like configuration

- $R = 1\,\text{m}$
- rf waves
- $B \sim 0.1\,\text{T}$
- $n \sim 10^{17}\,\text{m}^{-3}$
- $T_e \sim 5-8\,\text{eV}$
- $\rho_s \sim 1-15\,\text{mm}$

Magnetic-field topology different from tokamak

Core-like region (slab-like)

Transition region

SOL-like region (source free)
A Drift-Interchange (D-I) wave propagates vertically upward along outboard profile slope

40% of spectral power @ ~15 kHz

\[k_\parallel \sim 0 \]

\[\nabla B \]

Diagnostic: 2D Langmuir probe array
- 86 tips (here: \(I_{\text{sat}} \))
- 4 \(\mu \text{s} \) resolution
Blob ejection from wave crests of D-I wave

Wave crests of D-I wave radially unstable and elongate

Resolution: 12 μs

Outer part lags behind and gets “sheared off”

A blob completely detaches and continues to propagate radially outward
Quantitative analysis of blob dynamics

 - Pos./neg. structures from threshold segmentation ($\delta n > \delta n_{th}$ / $\delta n < -\delta n_{th}$)
 - Trajectories from tracking criterion
Statistical analysis of trajectory database

- Spatial abundance of trajectories / average motion patterns
 - Blobs in many aspects similar to tokamak observations

positive structures

negative structures

Radial propagation
\[v_{r,\text{blobs}} = 1-2 \text{ km/s} \]

Vertical propagation
(positive and negative wave crests)

Skewness gradient
from core to SOL

Wave region:
double-humped PDFs

SOL region:
“Universal-type” PDFs
Blob-induced transport

- Instantaneous fluxes during events from ensemble average (arrows)
- Time-average transport by counting “transport events” through test surfaces

Size of inst. fluxes: \(\sim 3 \times 10^{19} \text{ m}^{-2}\text{s}^{-1} \)
Parallel losses: \(\sim 5 \times 10^{18} \text{ m}^{-2}\text{s}^{-1} \)

Statistics of transport events

- Inter-event times distributed exponentially
 - Increasing time constants for increasing radial position
Conclusions

- Relevant scenario to test blob models in a basic toroidal experiment identified
 - Blobs are observed with very similar properties to tokamak observations
 - Magnetic-topology change seems not essential for blob formation
- Origin of blobs in TORPEX
 - Blobs are sheared-off from elongated wave-crests of a Drift-Interchange wave (Mechanisms? → Ivo Furno, next talk)
- Transport properties
 - Fluxes during events 10 x larger than steady-state parallel losses
 - Time-average effect 10 x smaller than steady-state parallel losses

- Outlook: use data from tokamak SOLs, basic toroidal devices and linear devices together to validate SOL simulation codes
Pilot chart and death-birth conditional prob.

- Clear change in average structure orientation in ejection region
- Deceleration from ~1750 m/s to 1000 m/s along radial propagation
- Conditional birth probability of blobs reaching the far SOL peaks at (-5,-10) cm
 - Blobs travel distances of order of minor radius as coherent structures
Legend

Pilot chart

- Prop. to probability of propagation direction
- Each half tail: 250 m/s
- Average orientation and extension

Area of circle prop. to # trajectories

Birth/death chart

- Color: probability that a structure dies at B, given that it was born at A
- Background color: probability that a structure is born at A

Legend

B
A

Background color: probability that a structure is born at A

Color: probability that a structure dies at B, given that it was born at A