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Motivation

Radial transport at the edge of tokamaks is known to be dominated

by turbulent processes.

Extensive studies of turbulent transport of plasma density at the edge

of plasma by means of Langmuir probes.

Diagnostics observe a turbulent transport of the plasma density in the

scrape-off layer (SOL): superposition of convective events, which are

responsible for the transport of matter over long radial distances and

of background turbulence.

Different extraction methods have been developed, which are based

on signal clipping, see e.g. Antar et al., PoP, 8 (2001).

Here: new method to extract coherent bursts from turbulent signals

based on the orthogonal wavelet representation.



Orthogonal wavelet representation

The signal is thus developed into an orthogonal wavelet series,

S(t) = S00φ00(t) +
∑

(j,i)∈ΛJ

S̃jiψji(t)

where φ00 is the scaling function and ψji the corresponding wavelets,

i is the index for the instant t and j the index for the time scale τ .
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Coifman 12 wavelet. Top: scaling function φ(t) and the modulus of its Fourier

transform |φ̂(ω)|. Bottom: wavelet ψ(t) and the modulus of its Fourier transform

|ψ̂(ω)|.



Iterative algorithm for wavelet denoising

Signal  f = Coherent signal + Incoherent noise

 Iterative algorithm :
1. The signal  f , sampled on N points, is projected on a wavelet basis

  to obtain the coefficients      .

2.   Set n=1   and             .

3. Compute the threshold                                  .

4. The incoherent coefficients        are those for which             .

5.   If               go to 3. and set n=n+1,  else go to 6.

6. The coherent signal       is reconstructed from               .

            The incoherent noise  is computed as                     .
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1.  Goal:
           Extraction of coherent vortices
           from a noise which will then be modelled
           to compute the flow evolution.

2.  Apophatic principle:
 - no hypothesis on the vortices,
 - only hypothesis on the noise,
 - simplest hypothesis as our first choice.

3.  Hypothesis on the noise:
        fB = f + w
w     : Gaussian white noise,
σ      : variance of the noise,
N      :number of coefficients.

4.  Computation of the threshold:

5.  Denoised signal:
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Wavelet-based denoising 

Appl. Comput. Harmonic Analysis, 18 (2), 177-185 
Azzalini, Farge, Schneider

Appl. Comput. Harm. Anal., 2005



Application to turbulent edge plasma
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Plasma scenario of the shot 28338 from the tokamak Tore Supra, Cadarache. The

duration of the shot is 18 s. The plasma density fluctuations are measured by a

fast reciprocating Langmuir probe. When the probe is 2.8 cm away from the LCFS

in the SOL, the signal is acquired during time windows of 8ms.



Extraction of coherent bursts(I)
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Signal S(t) of duration 8.192ms, corresponding to saturation current fluctuations

measured at 1MHz in the SOL of the tokamak Tore Supra, Cadarache. Top: total

signal S. Middle: coherent part SC. Bottom: incoherent part SI.



Extraction of coherent bursts (II)

Optimal threshold value after n = 12 iterations of the algorithm.
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Extraction of coherent bursts (III)

Statistical properties of the signal S(t) from the tokamak Tore Supra, Cadarache,
for the signal and its coherent and incoherent components using the Coifman 12
orthogonal wavelet.

Signal total coherent incoherent
S SC SI

# of coefficients 8192 479 7713
% of coefficients 100 % 5.8 % 94.2 %

min value -0.284 -0.282 -0.307
max value 1.689 1.686 0.374
mean value 0.019 0.019 < 10−11

Variance σ2 0.0417 0.0361 0.0056
% of variance 100 % 86.6 % 3.4 %

Skewness 2.564 2.842 0.383
Flatness 12.001 14.224 4.026



Probability Distribution Functions in log–lin coordinates
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Probability density function p(S), estimated using histograms with 50 bins. PDF

of the total signal S (green dashed line), of the coherent component SC (red solid

line) and of the incoherent component SI (blue dotted-dashed line), together with

a Gaussian fit with variance σ2
I (black dotted line).



Fourier spectrum and modified periodogram
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Top: total signal S(t), middle: coherent component SC(t) and bottom: incoherent component SI(t).

The periodogram is plotted in green, red and blue for the total, coherent and incoherent signal,

respectively. Superimposed are the modified periodograms by first tapering the data with a raised

cosine window (affecting 40 data points at each boundary), and then convolving the periodogram

with a Gaussian window (with standard deviation of 40 data points). (black thick line).



Wavelet spectrum (I)

Scalogram: distribution of the variance of the signal scale per scale:

Ẽj =
1

2

2j−1∑

i=0

(
S̃ji

)2
.

Relation between the scale index j and the frequency ω: ωj =
ωψ
2j

.

Wavelet spectrum: Ẽ(ωj) = Ẽj/ωψ,

with ωψ being the centroid frequency of the mother wavelet whose

value is ωψ = 1.3 for the Coifman 12 wavelet used here.

Smoothed version of the Fourier spectrum, the smoothing kernel be-

ing the square of the Fourier transform of the wavelet, since

Ẽ(ω) =
1

ωψ

∫ +∞

0
E(ω′)

∣∣∣∣∣ψ̂
(
ωψ ω

′

ω

)∣∣∣∣∣

2

dω′ .



Wavelet spectrum (II)
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Wavelet spectra Ẽ(ωj) (lines with symbols) and modified periodograms E(ω) (lines)

of the total signal S (green and +), of the coherent signal SC (red and �) and of

the incoherent signal SI (blue and ◦).



Intermittency: scale dependent flatness (I)

Moments of the wavelet coefficients:

M̃
p
j =

1

2j

2j−1∑

i=0

(
S̃ji

)p
.

The scale dependent flatness is then defined as

F̃j =
M̃4

j
(
M̃2

j

)2 .

The relation between scale and frequency allows to express the flat-

ness as function of the frequency ωj, similarly to the wavelet spec-

trum. Note that Gaussian white noise, which is by definition non–

intermittent, would yield a flatness equal to three for all frequencies.



Intermittency: scale dependent flatness (II)
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Flatness of the band-pass filtered signal F̃ versus frequency ωj for the total signal

S (green dashed line), of the coherent signal SC (red solid line) and of the inco-

herent signal SI (blue dotted-dashed line). The horizontal dotted line F̃(ωj) = 3

corresponds to the flatness of a Gaussian process.



Flatness F< of the low-pass filtered signal
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Flatness of the low-pass filtered signal F< versus frequency ωj for the total signal

S (green dashed line), of the coherent signal SC (red solid line) and of the inco-

herent signal SI (blue dotted-dashed line). The horizontal dotted line F>(ωj) = 3

corresponds to the flatness of a Gaussian process.



Conclusions

Wavelet-based recursive method to extract coherent bursts out of turbulent signals
without any adjustable parameter.

Fast algorithm with linear complexity (based on fast wavelet transform).

Application to ion saturation current measured in the SOL of the tokamak Tore
Supra.

Extraction of coherent bursts (containing most of the density variance, correlated
with non-Gaussian statistics) from an incoherent background noise (almost decor-
related and quasi-Gaussian).

Non-Gaussianity of the PDF of the coherent component increases with the fre-
quency, which confirms that the bursts are highly intermittent.

In contrast, the incoherent component remains quasi-Gaussian up to high frequen-
cies, which confirms the non intermittency of the background noise.

Conjecture: the coherent bursts are due to organized structures produced by non-
linear interactions and responsible for turbulent transport. The incoherent back-
ground corresponds to the turbulent fluctuations which only contribute to turbulent
diffusion.
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