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| ntroduction

Thistalk describesrecent results obtained with a SOL turbulence
simulation code (SOLT-TRM, D. Russell, 2005)

Linear theory, analytic blob theory and 3D simulations show that
mode structure parallel to magnetic field isimportant

Thetwo-region model (TRM) isthe simplest and fastest way to do
simulationswith parallel structure (reduced 3D)
The smulations addressthe following issues:

— effect of parallel physics and magnetic geometry (fanning, shear) on
turbulent transport

— roleof blobs
 Dblob birth zone and velocity scaling
 blob source rate and “packing fraction”
— statistical properties of turbulence
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Two-Region Modd (TRM)

1. Solve vorticity and density eqs in two
planes in midplane and divertor regions

(2D turbulence simulation in each plane,
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TRM model: Myra, Russell, D’'lppolito, Phys. Plasmas 13, 112502 (2006)
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Comparen(x,y) at outer midplane for four cases
(vary magnetic geometry and parallel resistivity)

Geometry ON:
f=Y, E=4
Geometry OFF:
f=1, £€=0
LOW n =10%

HIGH n = 10°

Disconnection for high n
—> larger growth rate and
faster transport
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Parallel disconnection and decorrelation

® (region 2)
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Turbulent particle flux

G: OFF, low n ® G: ON, lown
® G: OFF, highn G: ON, highn

I'(t) at x = 30 at outer midplane

r=<r>,T asnT

'l for G:ON

Note: temporally
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SOL Turbulence has non-Gaussian pdf

simulated “probe data” for

TRM turbulent particle flux Experimental data (lg,,)
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Turbulent (blob) transport flattens SOL profile

G: OFF, low n
® G: OFF, highn

N\
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Where are blobs
generated?

What is the scaling of the
blob generation rate?
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Skewness profile S(x) in ssimulations
resembles experiment

« Skewness S(x) = <S>, ; measures Intermittency of turbulence

SOLT-TRM code

(c)
S(X)

A
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Skewness on/n

DIII-D BES data
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Boedo, PoP (2003)
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Blob creation zoneislocation of
maximum linear growth rate

< Blob

1[(c) ﬁ S=0
0.5|S(x
0 & Similar behavior for all 4 cases:
—Oj\/ » blobs created near point where S=0
e coincides with maximum linear

10 1x5 - mode growth, e n-tdn/dx
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Blob creation rate

Particle flux due to blob transport o< blob creation rate, which can be
related to a “packing fraction” 0<f < 1 defined by

I"(x) :fp Ng Vx (X) = - v

! n(x) "
fp(x) =n(x)/ ”(Xg) ’ f=2L,/L, W/
S(Xg) =0 X

The packing fraction can be inferred from the turbulent T°(x) and n(x).
Results for our 4 reference cases at X = 30 show that the packing

fraction f increases with n:

G: OFF, lown: f,=043 @G: ON, lown: f,=0.21
® G: OFF, highn: f;=0.65 G: ON, highn: f,=0.41
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Summary - 1

The SOLT-TRM code (SOL Turbulence with Two-Region Model) isa
useful tool for studying turbulent transport physics including physics|| to B

— magnetic shear decorrelation
— fanning of flux tubes near X-points
— collisional disconnection from divertor sheaths rT as n T

'l for G:ON

Both “probe”’ diagnostics of fluctuations and “wavelet” analyses of blob

propagation have been used with various filtering schemes. Some specific
results:

» parametric dependence of total turbulent flux (probe data) is ssimilar to
that of blob contribution to the flux (wavelet data).

> flux pdfs are insensitive to geometry and collisionality
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Summary - 2

» pdfsare similar in simulation and in experiments, e.g. blobs with
I'>2 o = 40% of flux (smilar to DIII-D data)

> blobs are created where the skewness S = O (at the location of the
maximum linear growth rate)

» blob creation rate (f,) and velocity v, both increase at high 1
(consistent with C-Mod flux data)

o Further studies of turbulent blob creation (size distribution) and the
relation of the observed transport to analytic theory predictionsisin
progress.
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Effect of geometry on initialized blobs
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