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Define “Validation Metric” by 
What You Want to Do with It

• See [O&B 2006] for CFD perspective.
• Quantitative approach to code calibration,
• Determine where model & experiment agree well & 

where they don’t,
– Know where to focus future effort.

• Test hypotheses,
– E.g., does one model match experiment better than another?

• Quantitatively characterize uncertainty in model –
experiment comparison,
– Is resulting confidence interval acceptable?
– Estimate uncertainty in predictive simulations.



Factors Desired in Validation Metrics

• Experimental measurement uncertainties,
– Including those introduced in post-processing.

• Uncertainties in code inputs,
• Code errors.

– E.g., inadequate spatial resolution.
• Number of experiments,
• “Primacy” of variables used for 

comparison.



Example Validation Metrics:
[O&B 2006], [O&T 2002]

• Simulation result: y(x); experimental data: Yn(x), mean Ȳ (x),
⇒ estimated error in simulation Ẽ(x) = y(x)− Ȳ (x).

• Standard deviation of Yn(x) over N experiments: s(x),

• 90% confidence interval for mean Ȳ (x): t0.05,N−1s/
√

N .

• O&B metric says: with 90% confidence, true error in simulation is in interval(
Ẽ(x)− t0.05,N−1

s(x)√
N

, Ẽ(x) + t0.05,N−1
s(x)√

N

)

• O&T use similar analysis to get single scalar metric, 0 < V < 1:

V = 1−
1

L

∫ L

0
tanh

[∣∣∣∣∣y(x)− Ȳ (x)

Ȳ (x)

∣∣∣∣∣+
∫ ∞
−∞

s(x)√
N

∣∣∣∣ zȲ
∣∣∣∣ f(z) dz

]
dx.

– f(z) = PDF of student’s t-distribution for N − 1 degrees of freedom.



DEGAS 2 Simulations of NSTX Gas Puff Imaging 
Experiments Yield “Good Agreement”

[Stotler 2007]



Evaluate O&B, O&T Metrics with GPI Data 
from 3 Shots - DEMONSTRATION ONLY!

0

20

40

60

80

100

0204060

Radial Profile at cx = 32

Mean with 90% 
confidence interval
Simulation

E
m

is
si

on
 R

at
e 

 (a
rb

. u
ni

ts
)

cy  (pixels)

-60

-40

-20

0

20

0204060

Radial Profile of Error at cx = 32

+/- 90% 
confidence interval
Simulation Error

D
ev

ia
tio

n 
fro

m
 M

ea
n 

E
m

is
si

on
 R

at
e 

 (a
rb

. u
ni

ts
)

cy  (pixels)

• Global O&B “average relative error” = 62% ± 84%
• O&T metric V = 0.34



Are Other Metrics More Well Suited 
to Our Needs?

• [McFarland 2005] uses Bayesian Belief 
Networks:
– Incorporates uncertainties in measurements & 

model inputs,
– Their example utilizes a “too simple” model.
– Hypothesis testing: does model agree with 

data?
– Does not require multiple experiments.
– Does require complex math ⇒ enlist help of 

math colleagues in developing VM’s.



[Chen 2004] also Focuses on  
Uncertainty Propagation

• “Response Surface Methodologies”: 
metamodel used to determine impact of 
input uncertainty on uncertainty in results,

• Considers non-normal distributions,
– Shows how to transform to variables with 

near-normal distributions ⇒ standard 
methods apply.

• Techniques can be used with any VM.
• Again, mathematically involved.



References
• [O&B 2006] W. L. Oberkampf and M. F. Barone, 

J. Comp. Phys. 217, 5 (2006).
• [O&T 2007] W. L. Oberkampf and T. G. Trucano, 

Prog. Aero. Sci. 38, 209 (2002).
• [McFarland 2005] J. M. McFarland and L. P. 

Swiler, Sandia National Laboratories Report 
SAND2005-5980 (Nov. 2005).

• [Chen 2004] W. Chen et al., AIAA Journal 42, 
1406 (2004).

• [Stotler 2007] D. P. Stotler et al., J. Nucl. Mater. 
(in press) (2007).



Validation Experiments Lower on Hierarchy 
Have Greater Likelihood of Success
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Gas Puff Imaging Hardware Configuration in NSTX



Edge Thomson Scattering Midplane 
Profiles for H- & L-Mode Shots
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Three-Dimensional DEGAS 2 Simulations 
of NSTX GPI Experiments

• Take from experiment:
– EFIT equilibrium at time of interest,
– Electron density & temperature profiles vs. Rmid.

• Direct simulation of 64x64 pixel view of GPI 
camera.

• Primary complication: 
– Steady state simulation with plasma parameters 

constant on flux surface,
– But, real plasma 3-D & varying in time.
– Justification: interested mostly in 3-D neutral density.
– Only get Thomson scattering data at one or two time 

points.
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Calibrate PSI-5 Camera Nonlinear Response
Against Photomultiplier Tube

• Apply inverse to GPI data to get something ∝ photons / (m2 s st).
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Vertical Variation Dominated by 
Vignetting in Optical System 

• Vertical variation of “white plate” calibration similar to that of GPI experiments,

• Use to define filter function & apply to simulated camera image.



Relative Calibration of GPI Camera Geometry 
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