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Edge Current Dynamics during ELMs
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Overview

• The edge current is an important component of the ELM cycle,
but difficult to measure.

• We have made measurements of edge Bθ and  pe during Type 1
ELMing, high pedestal discharges on DIII-D (LIBEAM and TS)

– Used conditional averaging over multiple ELMs to improve
measurement resolution enough to examine different
phases of the ELM cycle

– At the limit of present diagnostic capability for LIBEAM

• Compare gradients in pressure and poloidal field

• See decoupling between current (~ ∇Bθ ) and ∇p.

• Limitations and prospects
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Theoretical picture of ELMs

• Pedestal limit set by coupled peeling/ballooning MHD modes
•  Max achievable pedestal pressure is a strong function of shaping
• ELMs represented by various limit cycles in { j, ∇p } space
• Our interest here: can we see these limit cycles evolve

experimentally? -- Start with TS & LIBEAM data
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Thomson scattering gives { ∇pe, Δpe } in
midplane

• The density and
temperature fits are
mapped to current density
measurement location just
below the midplane

•  Multiply to get Pe

• The radial derivative yields
∇Pe

• The width of the steep
gradient region ΔPe is also
calculated

• Data point every 12.5 ms
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We measure edge BPOL using LIBEAM
polarimeter

• Good tangency to flux surfaces  for
wide variety of discharges

• This resolution is required by need to
identify localized structure in BPOL

• Select the σ− line with narrowband
filter

• Measure ratio of CP to LP using
dynamic polarimetry to identify field
component along viewchord BVIEW:
(D.M.Thomas, RSI 74,3, 1541 (2003).

BVIEW (R,z)=  |B| cos (α)

1)  Use as EFIT constraint
2)  Solve directly using Ampere’s Law:
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LIBEAM gives high resolution radial profile of
BPOL

• BPOL ~ BVIEW, the
component along
viewchord.

• Profile can be used to
determine toroidal
current jφ

• Small signal levels +
correction of
systematic effects
limits time resolution.

• This work: push limits of
digital lock-in, do
multiple ELMs
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Pressure and poloidal field data are analyzed
during ELMing phase of shot

• Examine period from
beginning of Type 1 ELMs
until termination of lithium
beam injection.

• Data for this particular shot
covers 26 ELM cycles.

• TELM varies from 50-150 ms.
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ELM analysis - conditional averaging

• Use multiple ELMs to
improve signal-to noise

• Poloidal field analysis is
done over many short
time periods
δtLOCKIN ~ 0.5 - 2.0 ms,
dtAVG ~ 3 - 5 ms
ΔtELM ~ 50 - 150 ms

• Bin data according to
phase of cycle
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First step: look at difference in poloidal
field vs time

• Evaluate and sum
three channels
inside and outside
of high pressure
gradient region

• Proxy for toroidal
current density,
since ∇Bθ  ~ jφ
(Ampere’s Law)

•  This approach
minimizes the effect
of small changes in
width on jφ
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Effect of phase binning (26 cycles)

• Still cannot examine phase of period during or immediately after an ELM
because of background light
– Sets upper bound on resolving dynamics of j

• For Thomson Scattering, random nature of laser pulses sets minimum phase
resolution for resolving dynamics of ∇p,

• Divergence of
curves ==>
gradient
increases.

• indicates
growth of
current in this
region during
ELM period.
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Now, plotting difference reveals temporal
behavior for j--can compare with ∇p



DMT TTF’07 12

Conclusion: Edge jφ is  decoupled from
∇p for most of  the ELM cycle

• Edge pressure gradient:
– Drops rapidly(within ms) to

approximately half the pre-
ELM value

–  then recovers within ~25% of
the ELM cycle.

– Width shows similar temporal
behavior.

• dB/dr ~ Edge current density :
– Drops rapidly(within few ms)
– then increases throughout

the cycle  (even after
pressure gradient has
saturated)
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Experimental behavior  consistent with
theoretical  picture
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Experimental behavior  consistent with
theoretical  picture

1. Rapid ∇p drop
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Experimental behavior  consistent with
theoretical  picture

1. Rapid ∇p drop

2….And recovery
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Experimental behavior  consistent with
theoretical  picture

1. Rapid ∇p drop

2….And recovery

3. Slower ∇Bθ

growth throughout
cycle
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Speculations

• Early current collapse is most likely due to Pfirsch-
Schluter current disappearing with collapse of
pedestal gradient

• Later slow increase, after pressure gradient has been
restored, is probably due to continued growth of j-
parallel throughout ELM cycle (but not ∇p term)

• Since it is the current that keeps increasing while the
pressure gradient appears to have stalled/saturated,
it may be the current that is the actual ELM trigger.

• Why is current evolution so slow?
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Resistive timescales vary widely across
region of interest, but still too short to explain?

• Current diffusion time
much shorter than
measured response
on outboard side
–  (couple of ms  to diffuse

width of gradient region)

• τ is somewhat higher
on inboard side (~10
ms)

• Still short compared to
measured evolution
time for jTOR
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What’s next?

• Near term, this is about as good as it gets.
– Rerun experiment with longer ELM periods, multiple shots
– (Re)process data with multipeaks (FFT/Lockin) analysis.

• We hope to improve the signal-to noise ratio in the
future through:
– Detector improvements
– Current upgrades on beamline (energy and current)
– Components of OFE diagnostic initiative proposal

• Suggestions welcome!


