Edge Localized Mode Control in DIII-D using Magnetic Perturbation-Induced Pedestal Transport Changes

R.A. Moyer¹

In collaboration with:

T.E. Evans², M.E. Fenstermacher³, J.G. Watkins⁴, L.R. Baylor⁵, M. Bécoulet⁶,

J.A. Boedo¹, K.H. Burrell², C. S. Chang¹², E.J. Doyle⁷, P. Gohil², R.J. Groebner², V. Izzo¹

T.C. Jernigan⁵, I. Joseph¹, S. Kasilov⁸, S.C. Kruger⁹, S. Ku¹², G.R. McKee¹⁰, S. Mordijck¹

E. Nardon⁶, T.H. Osborne², L. Owen⁵, G. Park¹², G.D. Porter³, T.L. Rhodes⁷, D.L. Rudakov¹,

A. Runov^{11,} R. Schneider¹¹, G. Wang⁷, J.H. Yu¹, and L. Zeng⁷

- 1) University of California San Diego, La Jolla California
- 2) General Atomics, San Diego, California
- 3) Lawrence Livermore National Laboratory, Livermore California
- 4) Sandia National Laboratories, Albuquerque, New Mexico
- 5) Oak Ridge National Laboratory, Oak Ridge Tennessee
- 6) Association EURATOM-CEA, Cadarache France
- 7) University of California-Los Angeles, Los Angeles, CA
- 8) Kharkov Institute for Physics and Technology, Kharkov, Ukraine
- 9) Tech-X Corporation, Boulder, Colorado USA
- 10) University of Wisconsin-Madision, Wisconsin USA
- 11) Max Planck Institute for Physics, Greifswald, Germany
- 12) Courant Institute, New York, USA

Presented at the 12th U.S.-E.U. Transport Task Force Meeting San Diego, CA USA April 17–20, 2007

Edge resonant RMPs suppress Type I ELMs in DIII-D

 Pedestal becomes very quiet as imaged in CIII light (J. Yu, this mtg.).

> QuickTime[™] and a decompressor are needed to see this picture.

> > 126003, CIII

Paradox: why does RMP have large effect on pedestal density but little on pedestal T_e ?

- global particle balance change
 - QL estimate →3-4x increase in D_{eff}
- T_e profile flattens at top of pedestal
 - qualitatively consistent with QL estimate
 - quantitatively consistent for 0.85 < ψ_n < 0.94 with transport analysis by Stacey and Evans
- T_e increases for 0.98< ψ_n < 1

Pellet perturbation experiments confirm that τ_p^* is reduced a factor of 2.

- Identical pellets injected into discharges with $v_e^* \sim 0.2$, $\delta \sim 0.7$, and similar recycling conditions $\rightarrow \tau_p$ changes
 - I-coil = 0 kA, ELMing H-mode
 - I-coil = 4 kA, RMP-assisted ELM-free H-mode

Heat transport modeling of stochastic layer with E3D fluid Monte Carlo code predicts T_e pedestal collapse

- Constant temperature BC's (more power into edge as I-coil current increases to maintain inner boundary $\rm T_{\rm e}$)
- Result is consistent with conventional expectations for electron thermal transport in a stochastic layer

Max-Planck-Institut für Plasmaphysik

Possible resolutions to the paradox of particle pumpout without increased electron thermal transport

- Rotational screening of the RMP:
 - Seen in MHD simulations with JORIK code (E. Nardon et al.)and preliminary NIMROD extended MHD code runs (V. Izzo and I. Joseph, Sherwood Theory mtg.)
 - If δb_r doesn't penetrate, then what changes the global particle balance?

• Tokar model: combined impact of:

- particle flows along perturbed B
- reduction of neoclassical perpendicular transport with decreasing density
- nonlocality of parallel electron heat transport at low collisionality
- Increased E x B convection across separatrix:
 - Convection cells in MHD modeling (Nardon; Izzo) with enhanced resistivity, but weaken if resistivity is closer to experimental values
 - Leads to increased particle and electron thermal transport in fluid transport models without the heat flux limits

Tokar model [PRL 98 095001 (2007)] reproduces qualitative behavior of pedestal profiles:

combined impact of

- Il particle transport in stochastic field
- neoclassical \perp transport $\kappa_{\!\scriptscriptstyle \perp} \sim n^2$
- reduction of II heat flux below freestreaming limit

$$\kappa_{\parallel} = \kappa_{\parallel}^{SH} / \left(1 + \frac{\xi_{SH}}{\xi_{FS}} \frac{\lambda}{L_T} \right)$$

where
$$\xi_{SH} \approx 3$$
 and $\xi_{FS} \leq 0.1$
 $q_r \approx -\left(\kappa_{\perp} + \frac{\kappa_{\parallel}^{SH} \alpha_r^2}{1 + \alpha_r \frac{\xi_{SH}}{\xi_{FS}} \frac{\lambda}{T} \left|\frac{\partial T}{\partial r}\right|}\right) \frac{\partial T}{\partial r}$

where the stochastic field is described by

$$\alpha_r = \sqrt{D_{FL}/L_K}$$

with D_{FL} = field line diffusivity and L_K = Kolmogorov length

Top of electron barrier

Moyer TTF07 – 7

Increased particle transport may be due to increased fluctuation-driven <u>E x B</u> convective transport.

• FIR scattering: $k_{\theta} = 1 \text{ cm}^{-1}$ not spatially localized

Increased particle transport may be due to increased fluctuation-driven <u>E</u> x <u>B</u> convective transport.

• FIR scattering: $k_{\theta} = 1 \text{ cm}^{-1}$ not spatially localized \rightarrow increased coherent modes and broadband turbulence $\rightarrow 1.5x$ increase in \tilde{n}_{rms}

Increased particle transport may be due to increased fluctuation-driven <u>E x B</u> convective transport.

- FIR scattering: $k_{\theta} = 1 \text{ cm}^{-1}$ not spatially localized \rightarrow increased coherent modes and broadband turbulence $\rightarrow 1.5x$ increase in \tilde{n}_{rms}
- reflectometry: localized to pedestal

Increased particle transport may be due to increased fluctuation-driven <u>E x B</u> convective transport.

- FIR scattering: $k_{\theta} = 1 \text{ cm}^{-1}$ not spatially localized \rightarrow increased coherent modes and broadband turbulence $\rightarrow 1.5x$ increase in \tilde{n}_{rms}
- reflectometry: localized to pedestal \rightarrow increased turbulence \rightarrow 2x increase in \tilde{n}_{rms}
- $D_{eff} \sim \tilde{n}_{rms}^2 \rightarrow D_{eff}$ increases 3-4x, consistent with change inferred from profiles.

Pedestal toroidal rotation and E_r change promptly when RMP is applied and edge q resonant (3.4 < a95 < 3.7).

H-mode pedestal v_b spins up

Pedestal toroidal rotation and E_r change promptly when RMP is applied and edge q resonant (3.4 < a95 < 3.7).

• H-mode pedestal v_{ϕ} spins up and E_r well narrows.

E_r well formed by balance between X-pt ion orbit loss and rapid electron loss in stochastic field?

- Outside of E_r well minimum, E_r becomes strongly positive all the way to the main chamber wall
- Persistence of E_r well: X-point structure is stable during RMP [Joseph] → continued ion orbit loss [Park, Chang] on top of rapid electron lose

T_e rise near strike point and V_{float} < 0 during RMP are consistent with RMP penetration.

- Hot electrons and negative floating potential are consistent with connection of field lines from inside the pedestal with the divertor target plates
 - formation of a flux loss layer over at least the last few % inside the separatrix.

SAN DIEGO

Moyer TTF07 - 15

Xpt-TV experimental observations of "homoclinic tangle" confirm penetration of RMP at least into last few % in ψ_n .

Te (eV)

Demonstrates stability of X-point in presense of RMP
 Intersecting manifolds allow field lines to "tunnel" out of pedestal without island overlap (σ_{CH} < 1) Moyer ΠF07 - 16

Summary and Conclusions

- RMP ELM control experiments pose a paradox for pedestal transport: how is the pedestal density reduced without any reduction in T_e?
- Does toroidal rotation screen the RMP?

SAN DIEGO

- evidence for penetration at least to $\psi_n \sim 0.98$; NIMROD modeling underway to investigate δb_r (plasma)
- If RMP is screened, what changes the particle balance?
- Does RMP create <u>E</u> x <u>B</u> convection cells that enhance radial particle transport?
 - Seen in high resistivity MHD simulations (JORIK & NIMROD) but the cells increase electron thermal transport as well (Izzo, NIMROD),
 - Cells become weaker at lower resistivity (Nardon, JORIK)
- Do limits to the free-streaming parallel electron heat flux explain the low electron thermal transport?
 - First suggested by S. Krasheninnikov; Tokar model is qualitatively consistent with experiment
- RMP promptly alters—but doesn't destroy—H-mode E_r well
 - similar to initial XGC results: balance between electron loss in stochastic field ($\phi \rightarrow$ positive) and X-point ion orbit loss ($\phi \rightarrow$ more negative)
 - ñ increases 2X &quasi-linear D_{eff} increases 4x, consistent with measured pedestal density profile change

We need a transport model that self-consistently treats both the H-mode transport barrier and the stochastic layer transport.

Moyer TTF07 – 17