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Edge resonant RMPs suppress Type I ELMs in DIII-
D

• Pedestal becomes very 
quiet as imaged in CIII 
light (J. Yu, this mtg.).

QuickTime™ and a
 decompressor

are needed to see this picture.
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Paradox: why does RMP have large effect on 
pedestal density but little on pedestal Te?

• global particle balance 
change
– QL estimate →3-4x 

increase in Deff

• Te profile flattens at top of 
pedestal
– qualitatively consistent 

with QL estimate
– quantitatively consistent 

for 0.85 < ψn < 0.94 with 
transport analysis by 
Stacey and Evans

• Te increases for 0.98<ψn< 1

I-coil = 0 kA I-coil = 2 kA I-coil = 3 kA
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Pellet perturbation experiments confirm that τp* 
is reduced a factor of 2.

• Identical pellets injected into discharges with νe* ~ 0.2, 
δ ~ 0.7, and similar recycling conditions → τp changes
– I-coil = 0 kA, ELMing H-mode
– I-coil = 4 kA, RMP-assisted ELM-free H-mode
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Heat transport modeling of stochastic layer with 
E3D fluid Monte Carlo code predicts Te pedestal 
collapse

• Constant temperature BC’s (more power into edge as I-coil current 
increases to maintain inner boundary Te)

• Result is consistent with conventional expectations for electron
thermal transport in a stochastic layer

Te
Ti

Joseph JNM in press (2007)

122342 at 4650 ms BC’s: Te= 1.6 keV,  Ti= 2.6 keV at ψn = 77%
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Possible resolutions to the paradox of particle 
pumpout without increased electron thermal 
transport
• Rotational screening of the RMP:

– Seen in MHD simulations with JORIK code (E. Nardon et al.)and 
preliminary NIMROD extended MHD code runs (V. Izzo and I. Joseph, 
Sherwood Theory mtg.) 

– If δbr doesn’t penetrate, then what changes the global particle 
balance?

• Tokar model: combined impact of:
– particle flows along perturbed B
– reduction of neoclassical perpendicular transport with decreasing 

density
– nonlocality of parallel electron heat transport at low collisionality

• Increased E x B convection across separatrix: 
– Convection cells in MHD modeling (Nardon; Izzo) with enhanced 

resistivity, but weaken if resistivity is closer to experimental values
– Leads to increased particle and electron thermal transport in fluid 

transport models without the heat flux limits
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Tokar model [PRL 98 095001 (2007)] reproduces 
qualitative behavior of pedestal profiles:

• combined impact of 
– ll particle transport in stochastic field
– neoclassical ⊥ transport κ⊥ ~ n2

– reduction of ll heat flux below free-
streaming limit

where ξSH ≈ 3 and ξFS ≤ 0.1

where the stochastic field is described by

with DFL = field line diffusivity and LK = 
Kolmogorov length

κ || = κ ||
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Increased particle transport may be due to 
increased fluctuation-driven E x B convective 
transport.

• FIR scattering: kθ = 1 cm-1 not spatially localized → increased coherent modes and 
broadband turbulence → 1.5x increase in ñrms

reflectometry: localized to pedestal → increased turbulence → 2x increase in ñrms
Deff ~ ñrms

2 → Deff increases 3-4x, consistent with change inferred from profiles.

FIR
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Increased particle transport may be due to 
increased fluctuation-driven E x B convective 
transport.

• FIR scattering: kθ = 1 cm-1 not spatially localized → increased coherent modes and 
broadband turbulence → 1.5x increase in ñrms

• reflectometry: localized to pedestal → increased turbulence → 2x increase in ñrms
Deff ~ ñrms

2 → Deff increases 3-4x, consistent with change inferred from profiles.→
increased broadband turbulence

FIR

REFLN
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Increased particle transport may be due to 
increased fluctuation-driven E x B convective 
transport.
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Pedestal toroidal rotation and Er change promptly 
when RMP is applied and edge q resonant (3.4 < 
q95 < 3.7).
• H-mode pedestal vφ spins up and Er well narrows.
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Pedestal toroidal rotation and Er change promptly 
when RMP is applied and edge q resonant (3.4 < 
q95 < 3.7).
• H-mode pedestal vφ spins up and Er well narrows.
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ELMing H-mode

RMP-assisted

ELM-free H-mode
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Er well formed by balance between X-pt ion orbit 
loss and rapid electron loss in stochastic field?
• Outside of Er well minimum, Er becomes strongly positive all the 

way to the main chamber wall
• Persistence of Er well: X-point structure is stable during RMP 

[Joseph] → continued ion orbit loss [Park, Chang] on top of rapid 
electron loss 

Electron loss 
in stochastic 

field

X-pt ion 
orbit loss

Some 
qualitative 
similarities 

to XGC 
simulations 
(Park et al., 

TTF 07)
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Te rise near strike point  and Vfloat < 0 during 
RMP are consistent with RMP penetration.
• Hot electrons and negative floating potential are 

consistent with connection of field lines from inside the 
pedestal with the divertor target plates 
– formation of a flux loss layer over at least the last few % inside 

the separatrix.
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Xpt-TV experimental observations of “homoclinic
tangle” confirm penetration of RMP at least into last few 
% in ψn.

• Demonstrates stability of X-point in presense of RMP
• Intersecting manifolds allow field lines to “tunnel” out of 

pedestal without island overlap (σCH < 1)

123301: filtered Dα Xpt-TV

123300: filtered CIII Xpt-TV
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Summary and Conclusions

• RMP ELM control experiments pose a paradox for pedestal transport:  how is 
the pedestal density reduced without any reduction in Te?

• Does toroidal rotation screen the RMP?
– evidence for penetration at least to ψn ~ 0.98; NIMROD modeling underway to 

investigate δbr(plasma)
– If RMP is screened, what changes the particle balance?

• Does RMP create E x B convection cells that enhance radial particle 
transport?

– Seen in high resistivity MHD simulations (JORIK & NIMROD) but the cells increase 
electron thermal transport as well (Izzo, NIMROD), 

– Cells become weaker at lower resistivity (Nardon, JORIK)
• Do limits to the free-streaming parallel electron heat flux explain the low 

electron thermal transport?
– First suggested by S. Krasheninnikov; Tokar model is qualitatively consistent with 

experiment
• RMP promptly alters—but doesn’t destroy—H-mode Er well

– similar to initial XGC results: balance between electron loss in stochastic field (φ
→ positive) and X-point ion orbit loss (φ → more negative)

– ñ increases 2X &quasi-linear Deff increases 4x, consistent with measured pedestal 
density profile change

• We need a transport model that self-consistently treats both the H-mode 
edge transport barrier and the stochastic layer transport.
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