Edge Localized Mode Control in DIII-D using Magnetic Perturbation-Induced Pedestal Transport Changes

R.A. Moyer

In collaboration with:

1) University of California San Diego, La Jolla California
2) General Atomics, San Diego, California
3) Lawrence Livermore National Laboratory, Livermore California
4) Sandia National Laboratories, Albuquerque, New Mexico
5) Oak Ridge National Laboratory, Oak Ridge Tennessee
6) Association EURATOM-CEA, Cadarache France
7) University of California-Los Angeles, Los Angeles, CA
8) Kharkov Institute for Physics and Technology, Kharkov, Ukraine
9) Tech-X Corporation, Boulder, Colorado USA
10) University of Wisconsin–Madison, Wisconsin USA
11) Max Planck Institute for Physics, Greifswald, Germany
12) Courant Institute, New York, USA

Presented at the
12th U.S.-E.U. Transport Task Force Meeting
San Diego, CA USA
April 17–20, 2007
Edge resonant RMPs suppress Type I ELMs in DIII-D

- **Pedestal becomes very quiet as imaged in CIII light (J. Yu, this mtg.).**

QuickTime™ and a decompressor are needed to see this picture.

126003, CIII
Paradox: why does RMP have large effect on pedestal density but little on pedestal T_e?

- **global particle balance change**
 - QL estimate $\rightarrow 3-4x$ increase in D_{eff}

- **T_e profile flattens at top of pedestal**
 - qualitatively consistent with QL estimate
 - quantitatively consistent for $0.85 < \psi_n < 0.94$ with transport analysis by Stacey and Evans

- **T_e increases for $0.98 < \psi_n < 1$**
Pellet perturbation experiments confirm that τ_p^* is reduced a factor of 2.

- Identical pellets injected into discharges with $v_e^* \sim 0.2$, $\delta \sim 0.7$, and similar recycling conditions → τ_p changes
 - I-coil = 0 kA, ELMing H-mode
 - I-coil = 4 kA, RMP-assisted ELM-free H-mode
Heat transport modeling of stochastic layer with E3D fluid Monte Carlo code predicts T_e pedestal collapse

122342 at 4650 ms BC’s: $T_e = 1.6$ keV, $T_i = 2.6$ keV at $\psi_n = 77$

- Constant temperature BC’s (more power into edge as I-coil current increases to maintain inner boundary T_e)
- Result is consistent with conventional expectations for electron thermal transport in a stochastic layer

Possible resolutions to the paradox of particle pumpout without increased electron thermal transport

- **Rotational screening of the RMP:**
 - Seen in MHD simulations with JORIK code (E. Nardon et al.) and preliminary NIMROD extended MHD code runs (V. Izzo and I. Joseph, Sherwood Theory mtg.)
 - If δb_r doesn’t penetrate, then what changes the global particle balance?

- **Tokar model: combined impact of:**
 - Particle flows along perturbed \mathbf{B}
 - Reduction of neoclassical perpendicular transport with decreasing density
 - Nonlocality of parallel electron heat transport at low collisionality

- **Increased $E \times B$ convection across separatrix:**
 - Convection cells in MHD modeling (Nardon; Izzo) with enhanced resistivity, but weaken if resistivity is closer to experimental values
 - Leads to increased particle and electron thermal transport in fluid transport models without the heat flux limits
Tokar model [PRL 98 095001 (2007)] reproduces qualitative behavior of pedestal profiles:

- **combined impact of**
 - Il particle transport in stochastic field
 - neoclassical \(\kappa_\perp \sim n^2 \)
 - reduction of Il heat flux below free-streaming limit

\[
\kappa_\parallel = \frac{\kappa^{SH}_\parallel}{\left(1 + \frac{\xi_{SH}}{\xi_{FS}} \frac{L}{L_T}\right)}
\]

where \(\xi_{SH} \approx 3 \) and \(\xi_{FS} \leq 0.1 \)

\[
q_r \approx -\kappa_\perp + \frac{\kappa^{SH}_\parallel \alpha_r^2}{1 + \alpha_r \frac{\xi_{SH}}{\xi_{FS}} \frac{\lambda}{T} \frac{\partial T}{\partial r}} \frac{\partial T}{\partial r}
\]

where the stochastic field is described by

\[
\alpha_r = \sqrt{D_{FL}/L_K}
\]

with \(D_{FL} \) = field line diffusivity and \(L_K \) = Kolmogorov length

![Graph showing n_e, T_e, T_i profiles with separatrix indicating top of electron barrier]
Increased particle transport may be due to increased fluctuation-driven $E \times B$ convective transport.

- FIR scattering: $k_\theta = 1 \text{ cm}^{-1}$ not spatially localized

![Graph showing frequency (kHz) vs. amplitude (a.u.):](image)

- $\hat{n}(f)$ for different I-coil pulses and divertor D_α conditions.

![Overall $\hat{n}(f)$ for I-coil off and on:](image)
Increased particle transport may be due to increased fluctuation-driven $E \times B$ convective transport.

- **FIR scattering**: $k_\theta = 1 \text{ cm}^{-1}$ not spatially localized \rightarrow increased coherent modes and broadband turbulence \rightarrow 1.5x increase in \bar{n}_{rms}

![Graph](image-url)

Overall $\bar{n}(f)$

- I-coil on
- I-coil off

Overall \bar{n}_{rms} $k_\theta=1\pm1 \text{ cm}^{-1}$
Increased particle transport may be due to increased fluctuation-driven $E \times B$ convective transport.

- **FIR scattering**: $k_{\theta} = 1 \text{ cm}^{-1}$ not spatially localized \rightarrow increased coherent modes and broadband turbulence \rightarrow 1.5x increase in \bar{n}_{rms}

- **Reflectometry**: localized to pedestal \rightarrow increased turbulence \rightarrow 2x increase in \bar{n}_{rms}

$D_{\alpha} \sim \bar{n}_{\text{rms}}^2 \rightarrow$ Deff increases 3-4x, consistent with change inferred from profiles.

- **I-coil pulse**
 - **I-coil on**
 - Divertor $\bar{n}(f)$
 - Pedestal \bar{n}_{rms}
 - **I-coil off**
 - Overall $\bar{n}(f)$
 - Pedestal \bar{n}_{rms}

- **FIR REF LN**
 - I-coil on I-coil off overall $\bar{n}(f)$
 - Amplitude (a.u.)
 - Shot 123301
 - Time (msec)

- **Ampl. (a.u.)**
 - Frequency (kHz)
 - Overall $\bar{n}(f)$
 - Pedestal $\bar{n}(f)$

- **Ampl. (a.u.)**
 - Frequency (kHz)
 - Overall \bar{n}_{rms} $k_{\theta} = 1 \pm 1 \text{ cm}^{-1}$
 - Pedestal \bar{n}_{rms}

- **I-coil**
 - Overall \bar{n}_{rms} $k_{\theta} = 1 \pm 1 \text{ cm}^{-1}$
 - I-coil off
Increased particle transport may be due to increased fluctuation-driven $E \times B$ convective transport.

- **FIR scattering:** $k_\theta = 1 \text{ cm}^{-1}$ not spatially localized \rightarrow increased coherent modes and broadband turbulence \rightarrow 1.5x increase in \tilde{n}_{rms}
- **Reflectometry:** localized to pedestal \rightarrow increased turbulence \rightarrow 2x increase in \tilde{n}_{rms}
- $D_{\text{eff}} \sim \tilde{n}_{\text{rms}}^2$ \rightarrow D_{eff} increases 3-4x, consistent with change inferred from profiles.

Graphs

- **Overall $\tilde{n}(f)$**
- **Pedestal $\tilde{n}(f)$**
- **I-coil on**
- **I-coil off**

Data

- **Pedestal \tilde{n}_{rms}**
- **FIR**
- **REFLN**

Figures

- [Graphs showing data](image-url)
Pedestal toroidal rotation and E_r change promptly when RMP is applied and edge q resonant ($3.4 < q_{95} < 3.7$).

- **H-mode pedestal** v_ϕ spins up.

[Graph showing time vs. v_ϕ (km/s) with I-coil on at different times (1720 ms, 2520 ms, 2620 ms) and corresponding v_ϕ values.]
Pedestal toroidal rotation and E_r change promptly when RMP is applied and edge q resonant ($3.4 < q_{95} < 3.7$).

- **H-mode pedestal** v_ϕ spins up and E_r well narrows.

![Graph showing changes in v_ϕ and E_r over time](image)
E_r well formed by balance between X-pt ion orbit loss and rapid electron loss in stochastic field?

- **Outside of** E_r **well minimum, E_r becomes strongly positive all the way to the main chamber wall**
- **Persistence of E_r well**: X-point structure is stable during RMP
 - [Joseph] continued ion orbit loss [Park, Chang] on top of rapid electron loss

Some qualitative similarities to XGC simulations (Park et al., TTF 07)

![Graph](image)

- **Electron loss in stochastic field**
- **X-pt ion orbit loss**
T_e rise near strike point and $V_{\text{float}} < 0$ during RMP are consistent with RMP penetration.

- Hot electrons and negative floating potential are consistent with connection of field lines from inside the pedestal with the divertor target plates
 - formation of a flux loss layer over at least the last few % inside the separatrix.

![Graphs and diagrams showing plasma parameters and heat flux over time.](image)
Xpt-TV experimental observations of “homoclinic tangle” confirm penetration of RMP at least into last few \% in \psi_n.

- Demonstrates stability of X-point in presence of RMP
- Intersecting manifolds allow field lines to “tunnel” out of pedestal without island overlap (\(\sigma_{CH} < 1\))
Summary and Conclusions

- **RMP ELM control experiments pose a paradox for pedestal transport**: how is the pedestal density reduced without any reduction in T_e?

- **Does toroidal rotation screen the RMP?**
 - Evidence for penetration at least to $\psi_n \sim 0.98$; NIMROD modeling underway to investigate δb_r(plasma).
 - If RMP is screened, what changes the particle balance?

- **Does RMP create $E \times B$ convection cells that enhance radial particle transport?**
 - Seen in high resistivity MHD simulations (JORIK & NIMROD) but the cells increase electron thermal transport as well (Izzo, NIMROD).
 - Cells become weaker at lower resistivity (Nardon, JORIK)

- **Do limits to the free-streaming parallel electron heat flux explain the low electron thermal transport?**
 - First suggested by S. Krasheninnikov; Tokar model is qualitatively consistent with experiment.

- **RMP promptly alters—but doesn’t destroy—H-mode E_r well**
 - Similar to initial XGC results: balance between electron loss in stochastic field ($\phi \rightarrow$ positive) and X-point ion orbit loss ($\phi \rightarrow$ more negative).
 - ñ increases 2X & quasi-linear D_{eff} increases 4x, consistent with measured pedestal density profile change.

- We need a transport model that self-consistently treats both the H-mode edge transport barrier and the stochastic layer transport.