Two-phase L-H transitions in unfavorable configurations in Alcator C-Mod

Alcator C-Mod S. Hughes, I. Bespamyatnov*, E. Edlund, M. Greenwald, B. LaBombard, L. Lin, R. McDermott, M. Porkolab, J. Rice, W. Rowan*, J. Snipes, J. Terry MIT Plasma Science and Fusion Center *Univ. Texas Fusion Research Center

12th US-EU TTF Workshop, San Diego April 19, 2007

Research supported by U.S. Dept. of Energy

OUTLINE

- Introduction: Influence of magnetic configuration on L-H threshold, brief review of SOL flow results.
- Experiments with reversed field and current.
 - SOL flows.
 - Evolution of profiles
 - Changes in edge thermal transport and fluctuations prior to "L-H" transition.
- Discussion:
 - What can we learn about L-H transitions?
 What more information do we need?
 - How do these experiments relate to other 'slow transitions'
 - Opportunities for joint research? For comparisons with models?

L-H power threshold is well known to depend on magnetic configuration

- Higher thresholds with ion Bx∇B drift away from active X-point, seen since earliest ASDEX Hmodes.
- Very sensitive to S_{sep}, which may explain variable results in "DN"
- Several studies ~2000 (C-Mod, AUG, DIII-D) showed edge temperatures at L-H also ~2X higher – i.e. not just a difference in edge transport.
- C-Mod experiments ~2003 showed a likely connection to SOL flows and related core rotation.
 - HFS flows reverse direction LSN to USN, affect core rotation.

Results appear consistent with SOL flows causing the *differences* in P_{thresh} with configuration (not the transition itself).

C-Mod has only one (lower) "divertor" structure. This means:

Reversing B and I_p removes ambiguities in

comparing different magnetic configurations

- Upper tile configuration is more open than lower, not designed for high heat flux.
- LSN and USN shapes were not exactly symmetric.

Do these effects contribute to the observed differences in SOL, flows/rotation, profiles, threshold?

To find out, reversed I and B to compare in SAME configuration:

"Reverse B" has ion Bx⊽B drift upward.

"Normal B" has drift downward.

• Flow direction depends only on X-point location, NOT BxVB. Consistent with transport-driven flux. Similar Mach No. in forward, reversed B.

- Flow direction depends only on X-point location, NOT BxVB.
 Consistent with transport-driven flux. Similar Mach No. in forward, reversed B.
- But, since I_p is also reversed, flows are *counter*-I_p when Bx∇B is away from the X-point ('unfavorable'), *co-I_p* in favorable cases.

Key results confirmed by field reversal: L-H Thresholds higher in Reversed B LSN

- Ohmic core rotation is more counter-l_p in reversed field LSN.
 - Co-I_p increment when power, pressure increase.
- LSN **power thresholds** are much higher (2.7-3.7 MW) "unfavorable"
 - Usual variability with wall conditions.
- Threshold temperatures and gradients are also much higher (>400 eV), particularly at low n_e.
 - This has varied between campaigns.

Alcator

C-Mod

Edge $T_e(r)$ with unfavorable drift shows interesting evolution *before* L-H transition

- Edge T_e profiles evolve on a slow time scale, 3-4 $\tau_{\rm F}$.

Alcator

C-Mod

- Often a "break-in-slope" in $T_e(t)$, $\nabla T \sim 40$ ms before L-H.
 - Two-phase H-mode transition?
- Steep T_e gradients develop, *before* changes in ∇n_e & D_α (the classic "L-H") transition.
- $V_{tor}(0)$ steadily reduces.
 - Smaller change in edge V_{pol} .
- Stored energy W, H-factor also increase gradually, H_{89P} to 1.6 in Lmode.
- This L-mode evolution is also seen in Normal B USN, but is NOT seen in favorable drift direction, even with high L-H thresholds (eg, 8 T).

"Pedestal" in T_e develops prior to L-H transition

- T_e, p_e gradients develop before L-H over a narrower region (~2 mm) than in later H-mode.
 - $-\nabla p_e/n_e$ up to 200 keV/m!

- Preliminary measurements from ambient B⁺⁴ spectroscopy just *inboard* of pedestal indicate that total E_r does not change substantially until the L-H transition.
 - However, do not resolve the region of steep $\nabla {\rm T}_{\rm e}.$
 - New high active CXRS arrays, and xray diagnostics, promise improved V_{pol} and V_{tor} measurements in 2007.

Steady decrease in edge χ_{eff} is accompanied by changes in turbulent fluctuations

• Gradual decrease in magnetic fluctuations at outboard side, strongest in ~50-100 kHz band, accompanies 60% drop in edge χ_{eff} from power balance.

Alcator

C-Mod

- Net decrease in integrated \tilde{B} (5-250 kHz) during evolution is ~46%
- Upshift but little change in net n_e fluctuations by PCI (top view).
- Further sharp decreases in all fluctuations, and in χ_{eff} , at L-H transition.

Fluctuations in n_e and B respond differently

- Decrease in mid-range (~30-120 kHz) fluctuations Early to late L-mode is consistent and clear on magnetics.- TOP
- Decrease much less visible (sometimes not at all) on Phase Contrast Imaging – BOTTOM.
 - Both see changes in H-mode.
- Possible reasons:
 - $\delta n_e vs \delta B$ perturbations?
 - OR poloidal location? (PCI measures along vertical chord at mid-R, magnetics near outboard midplane where we expect ballooning transport).
 - AND/OR k_θ range? (PCI 0.5-7 cm⁻¹, magn <2.5 cm⁻¹)
- This campaign, we will use lower f reflectometry (δn_e , outer midplane) to get more information.
- As always, hardest to establish **causality** between fluctuations and transport.

Pre-LH evolution is consistent with a "soft" transition

Alcator C-Mod

- Edge flux-gradient plot shows gradual increase in ∇T with nearconstant Q, n_e, after 'break-inslope',
 - Appears to be a 'soft', second order transition, as would result from –ve dependence of χ on T or ∇ T.
 - Consistent with the gradual decrease in turbulence.
- Contrasts with the usual L-H transition, which is a rapid first order bifurcation.

Discussion

- How does this phenomenon relate to other 'slow transitions'?
 - Seems most similar to (likely the same as) 'Improved L-mode' on AUG with unfavorable drifts. (Ryter, PPCF 1998).
 - Globally similar features to the 'Intermediate Mode' regime seen on DIII-D but no evidence of "bursty" fluctuations or fluxes. (Colchin, PRL 2002).
 - What about 'slow transitions' on DIII-D with MARFE? (Moyer, PPCF 1999).

• What can it tell us about edge transport and L-H transition mechanism?

- Slow decrease in certain fluctuations accompanies rising T_{edge} , decreasing χ_{eff} . Do these fluctuations dominate edge thermal transport in L-Mode?
- Why does thermal but not particle transport decrease?? Different modes?
- What exactly is delaying L-H transition in unfavorable case, with high $\nabla p_e/n_e$?
- Practical applications/implications of unfavorable magnetic configurations.
 - 'Improved L-mode' might be attractive for advanced scenarios: H~1.6, but low density. Can it be maintained for long periods?
 - Subsequent H-modes have higher T_{ped} , lower n_{ped} and v^* control knob. Can this help us understand pedestal evolution and scaling?
- Ideas for joint experimental and/or model comparisons?

H-mode **pedestals** in unfavorable configuration also have higher T, and lower n_{ped} , v^*

In fully developed H-mode, pedestals in Reverse B LSN (unfavorable drift) tend to have lower n, higher T (up to 900 eV) than Forward B LSN with similar I, B, target n_e. Pedestal widths, pressures are similar.

Alcator

C-Mod

– This leads to lower collisionality pedestals, $0.25 < v_{ped}^* < 2.5$

- Similar results for high field (Forward B 8 T) pedestals. Common feature in both cases is a high power and temperature (lower v*) at the L-H threshold.
 - Is the threshold condition determining the final operating point?