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Dust in Dust in tokamakstokamaks
ObservationsObservations:
• Dust was observed in tokamak plasmas (camera view, 

Rayleigh laser scattering channel) and collected from 
inner wall surfaces

Production mechanismsProduction mechanisms:
• Erosion of plasma exposed surfaces
• Flaking of deposited layers
• Volumetric growth

Possible impact on fusion operationPossible impact on fusion operation:
• Safety and radiological issues: highly reactive dust 

posses risk of explosion, small volatile particles may 
absorb large amount of tritium

• Operational issues: dust may accumulate in or damage 
diagnostic ports and devices

• Plasma issues: transport of impuritiestransport of impurities
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TokamakTokamak dust examplesdust examples

[1] W.J. Carmack, DIII-D Dust Particulate Characterization (June 1998 Vent) INEEL/EXT-99-00095
[2] A.L. Roquemore, N. Nishino, C.H. Skinner et al. (private communication)

◄◄ DDIIIIII--DD11

▼▼ NSTXNSTX22
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Modeling of dust transportModeling of dust transport

The 3D Dust Transport in Tokamaks (DUSTTDUSTT) code has 
been developed:
• Curvilinear non-uniform mesh based on MHD equilibrium 
• Plasma, neutral and impurity parameters calculated by 

UEDGE code3

• Tracking of dust trajectories in 3D with resulting force, 
current, energy flux, dust ablation dynamics and phase 
transitions, dust-surface and dust-turbulence collisions

• Obtaining statistically averaged spatial profiles of dust 
density, radius, velocity, temparature etc. in tokamaks

• Variety of dust materials can be simulated

[3] T.D. Rognlien, J.L. Milovich, M.E. Rensink, and G.D. Porter, J. Nucl. Mater. 196-198 (1992) 347



55

Carbon dust survival and growthCarbon dust survival and growth
Dust can growgrow in relatively cold 
contaminated plasma regions
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Simulated dust profiles in DIIISimulated dust profiles in DIII--DD
1 micron1 micron carbon dust is launched from all plasma exposed 
surfaces
1%1% of sputtered wall material is assumed to form dust 
locally

-6

-5

-4

-3

-2

-1

0

1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

r, m

z,
 m

Density 

log
10

(n
d
, cm-3) 

-6

-5

-4

-3

-2

-1

0

1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

r, m

z,
 m

Density 

log
10

(n
d
, cm-3) 

-6

-5

-4

-3

-2

-1

0

1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

r, m

z,
 m

Density 

log
10

(n
d
, cm-3

-6

-5

-4

-3

-2

-1

0

1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

r, m

z,
 m

Density 

log
10

(n
d
, cm-3) 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

r, m

z,
 m

Radius 

R
d
, μm 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

r, m

z,
 m

Radius 

R
d
, μm 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

r, m

z,
 m

Radius 

R
d
, μm 



77

Dust impurity transportDust impurity transport
Dust can bring much more impurity atoms toward the 
separatrix than transport of neutrals
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Profiles of electron temperature in DIIIProfiles of electron temperature in DIII--D D divertordivertor

Dust can enhance radiation power loss and force force divertordivertor
detachmentdetachment
Cooling of the peripheral plasma due to detachment may 
further increase dust penetrationfurther increase dust penetration toward the core
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ConclusionsConclusions
The DUSTT codeDUSTT code was developed allowing to simulate 
dynamics and transport of dust particles and obtain spatial 
dust profiles in tokamaks

DustDust survivability conditionssurvivability conditions were analyzed for range of 
tokamak plasmas. It was shown that dust can grow in 
relatively cold (Te<10eV) contaminated plasma regions and 
penetrate deeply toward the separatrix

Dust transport can cause much deeper penetration of deeper penetration of 
impurity neutrals impurity neutrals toward the core than transport of atoms 
sputtered from walls

Dust may enhance radiation power loss and force force divertordivertor
detachmentdetachment
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