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Transport barrier
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• region of reduced (turbulent) trans-
port relative to surroundings

• evident profile steepening

-definition

• Key issues:
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Transport bifurcation evolution

• bistable flux model (minimal)

– Hinton ’91, Heat flux

−Q =

(
χnc+

χT

1+α(duE/dx)2

)
∇T

χnc neoclassical –H-mode survivor,χnc, χTurbulent both const.
uE- from radial force balance,α∼ 1/γ2

• two stable branches, H-mode gradient MHD-stability limited

• phase coexistence region

• transition may occur inco-existence regionat any point

• key question: where (when) doesit actuallyoccur?

• flux suppression factor depends on both pressure and density gradients,
suggests two field model at least(p,n)
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Two field problem → Minimal Acceptable Model

• use two component model introduced by Hinton and Staebler, ’93

• two equations for diffusive particle and energy transport

• flux suppression factors originating fromE×B flow shear

particles:

∂n
∂t
− ∂

∂x

[
D0 +

D1

1+α(duE/dx)2

]
∂n
∂x

= S(x)

heat:

3
2

∂p
∂t
− ∂

∂x

[
χ0 +

χ1

1+α(duE/dx)2

]
∂p
∂x

= H(x)

(ideally should be supplemented with the toroidal momentum transport,
impurites...)
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• S(fueling) is concentrated at the edge,x' a –edge fueling

• H (heating) at plasma center (x = 0) on -axis deposition

• equations are coupled because

duE

dx
'− c

eBn2

∂n
∂x

∂p
∂x
→ E′r coupling

χ1,D1 → pre-transition,
χ0,D0 → post-transition (6= neo, necessarily)

Reduction of the Model

g1 =−dn
dx

, g2 =−dp
dx

,

quasi-stationary situation:
–exactrelation between gradients ofp andn
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g2 =
QD1g1

χ1Γ− (D0χ1−χ0D1)g1

arrive at effectively one field evolution

∂g
∂t

=
∂2

∂x2

[
g+

λg

1+β(x)g4 (1+θg)−2 −Γ1(x)

]

λ = D1/D0, β = αQ2D2
1/χ2

1Γ2, θ = (χ0D1−D0χ1)/χ1Γ, Γ1 = Γ/D0

-decoupled equations
2 field→ 1 field (but more complex functional form)
N.B. Analytical Partof Hinton - Stabler ’93

⇒ χ1

χ0
=

D1

D0

so,g2 = QD1g1/χ1Γ
but

?
χ1

χ0
=

D1

D0
?
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For ES turbulence:χ1 ∼ D1

Post transition:

χ0 ∼ χneo

(with squeezing modes)

D1 ¿ χneo

λ = D1/D0 > λcrit → 2−8 depending onθ = (χ0D1−D0χ1)/χ1Γ
andphysics ofD1 uncertain....
⇒ non-ELM particle transport in pedestal ??

stationary solutions

→what is required for phase co-existence?
need to find roots of the equation

g+
λg

1+β(x)g4 (1+θg)−2 = Γ1
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⇒phase coexistence criterion

Π− <
√

QΓ < Π+

Π± ≡
(y±

α

)1/4 1+λ+y±
1+y±

D0

√
χ1

D1
, y± =

3λ
2
−1± 3

2

√
λ
(

λ− 16
9

)

Solution requires regularization⇒Coexistence;Actual Tran-
sition

whereis transition?

Hyperdiffusion regularization- Reduced Transition Model

∂g
∂t

=
∂2

∂x2

[
g+

λg

1+β(x)g4 (1+θg)−2 −Γ1(x)− ε2 ∂2g
∂x2

]
→Maxwell
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Other Approaches to Regular-
ization:

Variational approach

∂g
∂t

=
∂2

∂x2

δΛ
δg

where

Λ =
∫

[Φ(g)−Γ1g]dx

One can verify that

dΛ
dt
≤ 0

so that the “true” stationary solution
requires a global minimum ofΛ. This
leads to the Maxwell rule as well.

Φ(g)−Γg

g

Γ<Γf

Φ(g)−Γg

g

Γ>Γf

Φ(g)−Γg

g

Γ=Γf

(a)

(b)

(c)

g

Γ(x)

g (x)
+

g 
+

g (x)
-

g 
-

Γ=Γf

(d)
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Another route to regularization....

⇒ add physics to break factorization
of u′E...

Curvature effects of the
pressure profile

• second derivative of the pressure
profile

duE

dx
'− c

eBn2

∂n
∂x

∂p
∂x

+
c

eBn
∂2p
∂x2

bifurcation problem (reduction to
one field still works)

F(g )

g

2

2

Maxwell Rule

F (g2,µ)≡

χ0g2 +
χ1g2

1+
(

σg2
2

1+κg2
+µdg2

dx

)2 = Q(x)

σ =
√

α
c

eBn2

Γχ1

QD1
;

κ =
D0χ1−χ0D1

D1Q
; µ=

√
α

c
eBn

0-9



Conclusions

• ⇒hyperdiffusion regularization, variational principle and noise lead to
the Maxwell rule

• ⇒new rule for barrier location is established: in the finite pressure cur-
vature case it occurs at the lowest possible value of thermal flux(for co-
existence)

• in the core plasma, the curvature of the pressure profile is shown to be
able to produce an L→H transition even if the density profile is flat (i.e.
stable)

• 4curvature driven transition is different from the standard case in which
the density and pressure barriers are coupled

⇒What Does this All Mean, in Practice....
⇒for “standard” minimal model:
- ∃ co-existence region
- scale↔ λN (tiny in ITER)
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- Pcrit ↔ D0 (very poorly understood)
- hysteresisO(1/2) expectation i.e. Maxwell back-transition naive back

transition (not good news)
⇒including pressure curvature:
-transition forQ0 = Qmin

-hysteresis uncertain
-transition possible for weak flat∇n→ beatλN??
-dynamicsrequire further study.
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Zero dimension

L-H transition model, Kim and Dia-
mond (2003). Operates on four vari-
ables in local approximation.

• drift wave turbulence levelE

• drift wave driving temperature
gradientN

• zonal flow velocity
√

U

• mean flow shear follows instantly
the temperature gradient,V ∝ N2,
whered is a constant

4dynamical system, driverq(τ) (heat
source) – main control parameter

dE
dt

=
(
N−N4−E−U

)
E

dU
dt

= ϑ
(

E
1+ζN4 −η

)
U

dN
dt

= q(t)− (ρ+σE)N

0 0.5 1
N

0
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L- and H-modes:U = 0 butE 6= 0,
T-mode:E 6= 0 andU 6= 0, QH-mode:
U = E = 0 .

key aspects of dynamics

• Hopf bifurcation of T-mode into
limit cycle on a center manifold
of the system

• The center manifold is two di-
mensional attractor of three-dimensional
system formed by eigenspace spanned
on the two purely imaginary com-
plex conjugated eigenvalues.

• The third eigenvalue has
ℜλ < 0 which ensures local at-
traction to the center manifold

• T→QH system leaves the cen-
ter manifold
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Conclusions (0-D)

• local LH transition model is analyzed

• four singular points of dynamical system are identified

• stability conditions obtained

• two central manifolds described

• bifurcation scenarios studied

• the range of hysteretic behavior identified and turned out to be narrow
(< 0.1 of the control parameter value)
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