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Transport barrier o Key issues:
n -threshold

-width/extent -pedestal

vn

e region of reduced (turbulent) trans-
port relative to surroundings

spatial

e evident profile steepening :

-definition
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Transport bifurcation evolution

e bistable flux model (minimal)

— Hinton '91, Heat flux

XT
— ¢ — nc UT
° <X " 1+0((duE/dx)2>

Xnc Neoclassical —H-mode survivofac, XTturbulent 00th const.
ug- from radial force balancey ~ 1/y?

e two stable branches, H-mode gradient MHD-stability limited
e phase coexistence region

e transition may occur ilco-existence regioat any point

e key question: where (when) dogsctually occur?

e flux suppression factor depends on both pressure and density gradients,
suggests two field model at led gt n)
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Two field problem — Minimal Acceptable Model

e use two component model introduced by Hinton and Staebler, '93
e two equations for diffusive particle and energy transport

e flux suppression factors originating frolenx B flow shear

particles:
on 0 D1 on
 — Z |Dp+ = §(X
ot GXI 1+a(duE/dx)2] ax

heat:

30p 0 X1 ap
A A T Al + =H(x
2 0t OX [XO 1_|_q(duE/dx)2] OX )

(ideally should be supplemented with the toroidal momentum transport,
impurites...)
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e S(fueling) is concentrated at the edgey a —edge fueling
e H (heating) at plasma center-£ 0) on -axis deposition

e eguations are coupled because

dug C onadp
dx ~ eBr? ax ox

X1,D1 — pre-transition,
X0, Dg — post-transition# neo, necessarily)

— E/ coupling

Reduction of the Model

guasi-stationary situation:
—exactrelation between gradients pfandn

0-4



QD101
X1 — (DoX1 —XoD1) 01

arrive at effectively one field evolution

02 =

og 0° - Ag
ot ox2 1+B(x)g*(1+6g) *

—Fl(x)

A = D1/Do, B = aQ*Df/x4l %, 6 = (XoD1— DoX1) /X1l F'1 =T /Do
-decoupled equations

2 field — 1 field (but more complex functional form)
N.B. Analytical Partof Hinton - Stabler '93

S0,z = QD101/X1l
but



For ES turbulencey; ~ D,
Post transition:

X0 ~ Xneo

(with squeezing modes)

D1 < Xneo

A =D1/Dg > Agrit — 2— 8 depending o = (XoD1 — DoX1) /X1l
andphysics ofD4 uncertain....
=- non-ELM particle transport in pedestal ??

stationary solutions

—what is required for phase co-existence?
need to find roots of the equation

A
g+ J 5 — rl
1+B(x)g*(1+69)
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=-phase coexistence criterion

M- <+/QI <Tl4

_(Yx 414+ AN+Yy4 X1 3\ 3 16
ne= (%) 11y, 2\p; T2 T HEMAT g

Solution requires regularization=- Coexistence#- Actual Tran-
sition
whereis transition?

Hyperdiffusion regularization- Reduced Transition Model

2 2
%9 - 9 5 |9+ Ag — —1(X) —820—2 — Maxwell
ot Ox° |7 1+B(x)g*(1+6g) 0x
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Other Approaches to Regular-
Ization:

Variational approach

dg 0% O\

ot 0x2 3dg

where

N\ = / Flg X

One can verify that

dA
<
dt 0

so that the “true” stationary solution

requires a global minimum aX. This
leads to the Maxwell rule as well.
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Another route to regularization.... F(g.)

= add physics to break factorization

Of U/E Maxwel | Rul e
av
Curvature effects of the —
pressure profile 2
e second derivative of the pressure F(G2,W) =
profile
XoG2 + X122 ~Q(x)

de  © anap+ c 0°p
dx  eBrfdxdx eBnox?

bifurcation problem (reduction to - " "eBrfQD;’
one field still works)
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Conclusions

e =-hyperdiffusion regularization, variational principle and noise lead to
the Maxwell rule

e =-new rule for barrier location is established: in the finite pressure cur-
vature case it occurs at the lowest possible value of therma(ftbuxco-
existence)

e In the core plasma, the curvature of the pressure profile is shown to be
able to produce an-H transition even if the density profile is flat (i.e.
stable)

e /\curvature driven transition is different from the standard case in which
the density and pressure barriers are coupled

=What Does this All Mean, in Practice....
=for “standard” minimal model:
- 4 co-existence region
- scale— Ay (tiny In ITER)
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- Perit < Do (very poorly understood

- hysteresi9O(1/2) expectation i.e. Maxwell back-transition naive back
transition (not good news)

=-Including pressure curvature:

-transition forQgy = Qmin

-hysteresis uncertain

-transition possible for weak flain — beatAn??

-dynamicgequire further study.
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Zero dimension

L-H transition model, Kim and Dia- au _ 3 ( E _n> U
mond (2003). Operates on four vari- dt 1-+CN4
ables in local approximation.
- N
e drift wave turbulence levet (jj—t —q(t)— (p+0E)N

e drift wave driving temperature
gradientN

e zonal flow velocityy/U

05—

e mean flow shear follows instantly
the temperature gradieist,J N2,
whered is a constant u

Adynamical system, driveg(t) (heat
source) — main control parameter

dE .
= (N-N*-E-U)E
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L- and H-modest) =0 butE £ 0, e T—QH system leaves the cen-
T-mode:E # 0 andU # 0, QH-mode: ter manifold
U=E=0.

key aspects of dynamics

e Hopf bifurcation of T-mode into "
limit cycle on a center manifold
of the system

e The center manifold is two di- N
mensional attractor of three-dimensional:
system formed by eigenspace spanned
on the two purely imaginary com- “
plex conjugated eigenvalues.

o

e The third eigenvalue has
[IA < Owhich ensures local at-
traction to the center manifold
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Conclusions (0-D)

e |local LH transition model is analyzed

e four singular points of dynamical system are identified
e stability conditions obtained

e two central manifolds described

e bifurcation scenarios studied

e the range of hysteretic behavior identified and turned out to be narrow
(< 0.1 of the control parameter value)
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