ION Particle Transport in the TOKAMAK Edge Plasma

W. M. STACEY

Fusion Research Center Georgia Tech Email: weston.stacey@nre.gatech.edu

> Transport Task Force San Diego, CA APRIL 2007

Momentum balance requires a pinch-diffusion relation among Γ_r , $\partial p_i/\partial r$ and $V_{pinch}(\upsilon_{\phi}, \upsilon_{\theta}, E_r)$.

Combining the pinch-diffusion relation for Γ_r and the continuity equation yields a generalized diffusion equation with off-diagonal elements and convection (pinch).

Particle & Momentum Balances Must Be Satisfied

Particle Balance

 $\nabla \cdot \Gamma_{j} \equiv \nabla \cdot n_{j} \boldsymbol{\upsilon}_{j} = S_{j}^{ion}$

Momentum Balance

$$\nabla \cdot \left(n_j m_j \boldsymbol{v}_j \boldsymbol{v}_j \right) + \nabla p_j + \nabla \cdot \boldsymbol{\pi}_j = n_j e_j \left(\boldsymbol{v}_j \times \boldsymbol{B} \right) + n_j e_j \boldsymbol{E} + \boldsymbol{F}_j + \boldsymbol{M}_j - n_j m_j \boldsymbol{v}_{elcxj}^j \boldsymbol{v}_j \quad (2)$$

Radial Component

$$E_{r}^{0} = \frac{1}{n_{j}^{0}e_{j}} \frac{\partial p_{j}^{0}}{\partial r} + \upsilon_{\phi j}^{0} B_{\theta}^{0} - \upsilon_{\theta j}^{0} B_{\phi}^{0}$$
(3)

Toroidal Component

$$n_{j}^{0}m_{j}\nu_{jk}^{0}\left(\left(1+\beta_{j}\right)\nu_{\phi j}^{0}-\nu_{\phi k}^{0}\right)=n_{j}^{0}e_{j}E_{\phi}^{A}+e_{j}B_{\theta}^{0}\Gamma_{rj}+M_{\phi j}^{0}$$
(4)

where

$$\beta_{j} \equiv \frac{v_{gvj}^{0} + v_{\perp j}^{0} + v_{anomj}^{0} + v_{nj}^{0} + v_{elcxj}^{0} + v_{ionj}}{v_{jk}^{0}} \equiv \frac{v_{dj}^{*}}{v_{jk}^{0}}$$
(5)

WMS April 2007

Transport Task Force

(1)

Various Processes for Radial Transport of Toroidal Angular Momentum can be written in the form $RnmV_{\phi}$

Neoclassical

$$\left\langle R^{2}\nabla\phi\cdot\nabla\cdot\Pi\right\rangle = \left\langle R^{2}\nabla\phi\cdot\nabla\cdot\Pi\right\rangle_{gv} + \left\langle R^{2}\nabla\phi\cdot\nabla\cdot\Pi\right\rangle_{\perp}$$
(6)

where GYROVISCOUS

$$\left\langle R^{2} \nabla \phi \cdot \nabla \cdot \Pi \right\rangle_{gv} = - \left\langle \frac{1}{R h_{p}} \frac{\partial}{\partial l_{\psi}} \left(R^{3} h_{p} \eta_{4} \frac{\partial}{\partial l_{p}} \left(\upsilon_{\phi} / R \right) \right) \right\rangle$$
(7)

and "Perpendicular"

$$\left\langle R^{2}\nabla\phi\cdot\nabla\cdot\Pi\right\rangle_{\perp} = -\left\langle \frac{1}{Rh_{p}}\frac{\partial}{\partial l_{\psi}}\left(R^{3}h_{p}\eta_{2}\frac{\partial}{\partial l_{\psi}}\left(\upsilon_{\phi}/R\right)\right)\right\rangle$$
(8)

make a low order Fourier expansion $X(r,\theta) = X^0(r) [1 + X^c \cos \theta + X^s \sin \theta]$

$$\left[R^{2} \nabla \phi \cdot \nabla \cdot \Pi \right]_{gvj} \approx \frac{1}{2} \eta_{4j} \frac{r}{R_{0}} \left(L_{n}^{-1} + L_{T}^{-1} + L_{v_{\phi}}^{-1} \right) \left[\left(4 + \tilde{n}_{j}^{c} \right) \tilde{v}_{\phi j}^{s} + \tilde{n}_{j}^{s} \left(1 - \tilde{v}_{\phi j}^{c} \right) \right] v_{\phi j}$$

$$\equiv R_{0} n_{j}^{0} m_{j} v_{gvj} v_{\phi j}$$
and
$$\left[\left(4 + \tilde{n}_{j}^{c} \right) \tilde{v}_{\phi j} + \tilde{n}_{j}^{s} \left(1 - \tilde{v}_{\phi j}^{c} \right) \right] v_{\phi j}$$

$$\left[\left(4 + \tilde{n}_{j}^{c} \right) \tilde{v}_{\phi j} + \tilde{n}_{j}^{s} \left(1 - \tilde{v}_{\phi j}^{c} \right) \right] v_{\phi j}$$

$$\left[\left(4 + \tilde{n}_{j}^{c} \right) \tilde{v}_{\phi j} + \tilde{n}_{j}^{s} \left(1 - \tilde{v}_{\phi j}^{c} \right) \right] v_{\phi j}$$

$$\left[\left(4 + \tilde{n}_{j}^{c} \right) \tilde{v}_{\phi j} + \tilde{n}_{j}^{s} \left(1 - \tilde{v}_{\phi j}^{c} \right) \right] v_{\phi j}$$

$$\left\langle R^{2}\nabla\phi\cdot\nabla\cdot\Pi\right\rangle_{\perp j}\approx R_{0}\eta_{2j}\left[L_{\nu\phi}^{-1}\left(\frac{1}{r}-L_{\eta2}^{-1}\right)-\frac{1}{\nu\phi_{j}}\frac{\partial^{2}\nu\phi_{j}}{\partial^{2}r}\right]\nu_{\phi j}\equiv R_{0}n_{j}^{0}m_{j}\nu_{\perp j}\nu_{\phi j} \quad (10)$$

where the $\tilde{n}_j^c \equiv n_j^c / \mathcal{E}$, etc. are poloidal asymmetry coefficients

WMS April 2007

⁻usion Research Center - Georgia Institute of Technology

Transport Task Force

VARIOUS PROCESSES ... (CONTINUED)

TURBULENT (ANOMALOUS) VISCOSITY

usually assumed to be of the form of Eqs. (8) and (10) with an enhanced viscosity coefficient η_{anom}

$$\left\langle R^{2}\nabla\phi\cdot\nabla\cdot\Pi\right\rangle_{anomj}\approx R_{0}\eta_{anomj}\left[L_{\nu_{\phi}}^{-1}\left(\frac{1}{r}-L_{\eta_{2}}^{-1}\right)-\frac{1}{\nu_{\phi j}}\frac{\partial^{2}\nu_{\phi j}}{\partial^{2}r}\right]\nu_{\phi j}\equiv R_{0}n_{j}^{0}m_{j}\nu_{anomj}\nu_{\phi j}$$
(11)

NERTIAL TORQUE (using Eq. 1)
$$\left\langle R^2 \nabla \phi \cdot \nabla \cdot \left(n_j m_j \mathbf{v}_j \mathbf{v}_j \right) \right\rangle = \left\langle R^2 \nabla \phi \cdot n_j m_j \left(\mathbf{v}_j \cdot \nabla \right) \mathbf{v}_j \right\rangle + R_0 n_j m_j v_{ionj} v_{\phi j}$$
(12)

and

$$\left\langle R^{2} \nabla \phi \cdot n_{j} m_{j} \left(\upsilon_{j} \bullet \nabla \right) \upsilon_{j} \right\rangle \approx \frac{1}{2} \left(\frac{\upsilon_{rj}}{R_{o}} \left\{ \varepsilon \left(1 + \tilde{n}_{j}^{c} + \tilde{\upsilon}_{\phi j}^{c} \right) - 2 R_{o} L_{\upsilon_{\phi} j}^{-1} \right\} - \varepsilon \frac{\upsilon_{\theta j}^{0}}{R_{o}} \left\{ \tilde{\upsilon}_{\phi j}^{s} \left(1 + \tilde{n}_{j}^{c} + \tilde{\upsilon}_{\theta j}^{c} \right) - \tilde{\upsilon}_{\theta j}^{s} \left(1 + \tilde{\upsilon}_{\phi j}^{c} \right) - \tilde{\upsilon}_{\phi j}^{c} \tilde{n}_{j}^{s} \right\} \right) n_{j} m_{j} R_{0} \upsilon_{\phi j}^{0} \equiv R_{0} n_{j} m_{j} \nu_{nj} \upsilon_{\phi j}^{0}$$

$$(13)$$

CHARGE-EXCHANGE & ELASTIC SCATTERING

$$R_0 n_j^0 m_j v_{cxel} v_{\phi}$$

PINCH-DIFFUSION TRANSPORT RELATION

Combining the radial and toroidal components of the momentum balance equations—Eqs. (3) and (4)--yields a generalized pinch-diffusion relation for the radial particle flux

$$\Gamma_{rj} = \left\langle n_j \upsilon_{rj} \right\rangle = n_j D_{jj} \left(L_{nj}^{-1} + L_{Tj}^{-1} \right) - n_j D_{jk} \left(L_{nk}^{-1} + L_{Tk}^{-1} \right) + n_j \upsilon_{pj}$$
(14)

"diffusion coefficients"

$$D_{jj} \equiv \frac{m_{j}T_{j}\left(v_{dj}^{*} + v_{jk}\right)}{\left(e_{j}B_{\theta}\right)^{2}} , D_{jk} \equiv \frac{m_{j}T_{k}v_{jk}}{e_{j}e_{k}(B_{\theta})^{2}}$$
(15)

"pinch velocity"

$$n_{j}\upsilon_{pj} \equiv -\frac{M_{\phi j}}{e_{j}B_{\theta}} - \frac{n_{j}E_{\phi}^{A}}{B_{\theta}} + \frac{n_{j}m_{j}\nu_{dj}^{*}}{e_{j}B_{\theta}} \left(\frac{E_{r}}{B_{\theta}}\right) + \frac{n_{j}m_{j}f_{p}^{-1}}{e_{j}B_{\theta}} \left(\left(\nu_{jk} + \nu_{dj}^{*}\right)\upsilon_{\theta j} - \nu_{jk}\upsilon_{\theta k}\right)$$
(16)

where $f_p^{-1} \equiv B_\phi / B_\theta$.

PINCH-DIFFUSION ... (CONTINUED)

CONFIRMATION

Equation (14) constrains the edge pressure gradient, hence density gradient

$$\frac{-1}{n_i}\frac{\partial n_i}{\partial r} \equiv L_{ni}^{-1} = L_{pi}^{-1} - \frac{\nu_{ri} - \nu_{p,i}}{D_i} - L_{Ti}^{-1}$$
(17)

When v_{ri} is determined from the continuity equation, v_{pi} is evaluated from measured quantities, L_{Ti}^{-1} and is inferred from experiment, integration of Eq. (17) predicts the measured density profile in the edge of several DIII-D H-mode shots (e.g. PoP, 11, 5487, 2004).

WMS April 2007

⁻usion Research Center - Georgia Institute of Technology

GENERALIZED RADIAL DIFFUSION EQUATION

Substitute the pinch-diffusion relation Eq. (14) into the continuity equation, Eq. (1)

$$-\frac{\partial}{\partial r}\left(D_{jj}\frac{\partial n_{j}}{\partial r}\right) - \frac{\partial}{\partial r}\left(D_{jk}\frac{\partial n_{k}}{\partial r}\right) - \frac{\partial}{\partial r}\left(D_{jj}\frac{n_{j}}{T_{j}}\frac{\partial T_{j}}{\partial r}\right) - \frac{\partial}{\partial r}\left(D_{jj}\frac{n_{j}}{T_{j}}\frac{\partial T_{j}}{\partial r}\right) - \frac{\partial}{\partial r}\left(D_{jk}\frac{n_{j}}{T_{k}}\frac{\partial T_{k}}{\partial r}\right) - \frac{\partial}{\partial r}\left(D_{jk}\frac{n_{j}}{T_{k}}\frac{\partial T_{k}}{\partial$$

COMMENTS

- Only the first, "self-diffusion" term is usually included in edge codes, with a diffusion coefficient fit to match experimental density profiles.
- The "other species" diffusion term, the temperature diffusion terms, and the pinch convective term are usually neglected.
- Our experience indicates that the pinch convective term, which must be evaluated from the rotation velocities, is dominant in the plasma edge.

Figure 1: Generalized diffusion coefficients in the edge of DIII-D H-mode shot 92976

Transport Task Force

Another form for the pinch velocity that uses measured carbon toroidal rotation $\mathcal{D}_{\phi I}$ is

$$\mathcal{D}_{p,i} = \frac{\left[-M_{\phi i} - n_i e_i E_{\phi}^A + n_i m_i \left(v_{iI} + v_{di}^*\right) \left(f_p^{-1} v_{\theta i} + \frac{E_r}{B_{\theta}}\right) - n_i m_i v_{iI} v_{\phi I}\right]}{n_i e_i B_{\theta}}$$

WMS April 2007

Fusion Research Center - Georgia Institute of Technology

Transport Task Force

CONCLUSIONS

Momentum (rotation) equations must be solved along with continuity equation to determine particle transport in edge.

If a diffusion equation is used to calculate particle transport in the edge, then it should contain the "off-diagonal" and convective (pinch) terms required by momentum balance.