Role of ExB Shear/Zonal Flow and Rational q in ITB Formation

M.E. Austin¹, K.H. Burrell², E.J. Doyle⁴, P. Gohil², G.R. McKee³, T.L. Rhodes⁴, M.W. Shafer³, R.E. Waltz², G. Wang⁴, M.A. Van Zeeland²

¹University of Texas Austin
²General Atomics
³University of Wisconsin Madison
⁴University of California Los Angeles

Changes in transport seen in DIII-D as q_{min} traverses integer values in low- n_e L-mode NCS discharges

• Persistent core barrier forms in T_i after 1200 ms, triggered at $q_{min}=2$ crossing

A key signature of the transport changes is seen in the T_e gradient data

- $T_{\rm e}$ gradient steepens before and after $q_{\rm min}$ =2, dips at $q_{\rm min}$ =2
- Alfvén cascades are used to pinpoint the integer q_{min} times

GYRO results show profile corrugations that are locked to integer *q* surface

- Match $|\nabla T_{\rm e}|$ measurements observed in exp. => temperature component of the zonal flow
- $|\nabla T_e|$ highest where dens. of rational magnetic surfaces changes most rapidly
- Increased $|\nabla T_e|$ starts when q_{min} is slightly above 2

A model for core transport barrier formation near integer values of q_{min}

- Early in the discharge the plasma is marginal for barrier formation
- Before transition, shearing rate is insufficient for ITG suppression
- Near q_{min}=integer the addition of zonal-flow-induced ExB shear to the equilibrium ExB shear pushes the plasma into an improved confinement state

New capability for balanced NBI in DIII-D allows a test of the model

- Results from recent
 experiment using new
 counter injection beamline
- Balanced NBI case shows only transient confinement improvement near integer q_{min}, no core barrier formation

Reduced tor. rotation and lack of barrier formation in accordance with model

Balanced injection case confirms that sufficient background ExB shear is required for barrier formation

$T_{\rm e}$ exhibits similar zonal flow signature in balanced injection discharges as in co

Radius of q_{min} is smaller for balanced NBI discharges

Toroidal rotation in balanced NBI exhibits zonal flow characteristics

- Large increase in tor velocity shear between R=187-190 cm near integer q_{min} times
- From ECE, the radius of q_{min} is between 192-194 cm

Fluctuation reductions seen near integer q_{min} in balanced NBI case

 BES location is near/outside of q_{min} radius

Strong TAE modes and drop in core ion temperature are absent in balanced NBI case

• Implies TAE are responsible for drop in core T_i , v_{ϕ} , but not linked to transient confinement improvement

5 MW Co Injection

5 MW Balanced Injection

Key question: Why are zonal flow signatures only seen in low-*n*_e, L-mode NCS discharges?

- Neg. central shear occurs in a variety of DIII-D discharge types
 - Temperature jumps diminish as n_e is increased in L-mode NCS –collisionality?
 - Not visible in H-mode NCS –low turbulence levels?
 - Not apparent in ECHgenerated NCS discharges $-T_e \ge T_i$?

Gradients, collisionality vary as density changes in core barrier discharges

Current diffusion barriers at rational q_{\min} ?

- Current hole experiment on DIII-D
- Very early NBI plus ECH create and sustain extreme reverse shear/hollow current profiles
- In several discharges, q_{min} transitions between integer values at X-events

Summary

- Database of rational-q induced transport changes and ITB formation continues to grow
- A model for ITB formation in L-mode NCS was tested in experiments with mixed co and counter injection; more evidence of zonal flows was seen
- Differences in AE activity in co and balanced injected discharges rule out its contribution to barrier formation
- Operating regime required for observing rational q effects on transport is not understood

- •The flattened T_{e} -corrugations and enhanced ExB shear rates result from low density of rational surfaces and results in slightly reduced flow at the low order surfaces
- Electrostatic GYRO reruns show nearly same level of corrugations hence not a magnetic island effect

