Magnetic Fluctuation-Induced Particle Transport and Zonal Flow Generation in MST

D.L. Brower

Weixing Ding, B.H. Deng

University of California, Los Angeles, USA

D. Craig, S.C. Prager, J. Sarff, V. Svidzinski

University of Wisconsin-Madison, Madison, Wisconsin, USA

12th US-EU TTF Workshop
17-20 April 2007
San Diego, CA
Magnetic and Current Density fluctuations play an important role in transport and plasma relaxation for the Reversed Field Pinch (RFP) and tokamak configurations.

\[
\nabla J_{\parallel} (r) \rightarrow \delta B, \delta J
\]

\[
E_T \rightarrow \nabla J_{\parallel} (r) \rightarrow \delta B, \delta J
\]

Hall Dynamo
\[
\frac{\langle \delta J \times \delta B \rangle}{ne}
\]

Momentum Transport
\[
\langle \delta J \times \delta B \rangle
\]

Magnetic Reconnection

Particle Transport
- Charge Transport
- Maxwell Stress
\[
\frac{\langle \delta J_{\parallel} b_r \rangle}{eB}
\]

All processes coupled through \(\delta J \) and nonlinear mode interactions.
q Profile and Core Magnetic Fluctuation Spectrum

\[q = \frac{r B_r}{R B_p} \]

\[T_e \sim T_i \sim 400 \text{ eV} \]

Tearing modes and broadband magnetic turbulence

\[P(f) \text{ [Gs}^2/\text{kHz]} \]

\[f \text{ [kHz]} \]

standard 400ka

ppcd 400ka

magnetic turbulence

Tearing modes and broadband magnetic turbulence
Magnetic Fluctuation-Driven Charge Flux

Fluctuation-Induced Particle flux

\[
\Gamma_\alpha = \left< \delta n \delta E_\perp \right> + \left< \delta j_{\parallel,\alpha} \delta b_r \right> \\
\frac{B}{q_\alpha B} \\
\text{Electrostatic} \quad \text{Magnetic}
\]

non-ambipolar flux:

\[
\Gamma_q = \Gamma_i - \Gamma_e = \left< \tilde{j}_\parallel \tilde{b}_r \right> \frac{eB_0}{eB_0} = e\Gamma_q
\]

Radial Charge Transport

\[j_r = e\Gamma_q \]
Magnetic Fluctuation-Driven Charge Flux and Maxwell Stress

\[\Gamma_q = \frac{\langle \tilde{j}_\phi \tilde{b}_r \rangle}{eB} = \frac{1}{eB} \left[\langle \delta j_\phi \delta b_r \rangle \frac{B_\phi}{B} + \langle \delta j_\theta \delta b_r \rangle \frac{B_\theta}{B} \right] \approx \frac{1}{eB} \frac{R}{nB} \left(k \cdot \tilde{B} \right) \frac{1}{r} \tilde{b}_r \frac{\partial}{\partial r} \tilde{r} \tilde{b}_\theta > \]

\[\Gamma_q \approx \frac{1}{eB} \frac{B_\phi}{B} \left(1 - \frac{m}{nq(r)} \right) \langle \tilde{j}_\phi \tilde{b}_r \rangle \]

where \(\tilde{k} \cdot \tilde{B} = \frac{n}{R} B_\phi + \frac{m}{r} B_\theta \) and \(\frac{B_\phi}{B} \left(1 - \frac{B_\theta Rm}{B_\phi nr} \right) \frac{\langle \delta b_r \delta b_\theta \rangle}{r} \approx 0 \)

\[\nabla \times \delta \tilde{B} = \mu_0 \delta \tilde{J} \] and \(\frac{|r - r_s|}{r_s} \ll 1 \) and \(\langle ... \rangle \) denotes flux surface average

\[\langle \tilde{j}_\phi \tilde{b}_r \rangle \] Lorentz force equivalent to Maxwell Stress \(\frac{\partial}{\partial r} \langle \delta b_r \delta b_\theta \rangle \)
Fast polarimeter measures core mean and fluctuating B & J

Faraday rotation angle

$$\Psi \sim \int nB \cdot dl$$

$$\partial \Psi = c_F \int n_0 \delta B \cdot d\ell + c_F \int \delta nB_0 \cdot d\ell$$

11-chord FIR laser

32 magnetic coils toroidal array

~ 0

$m=1$ activity

$x=-17 \text{ cm}$

Faraday Rotation [deg.]

δB (a)

Time [ms]
Current Fluctuation Measurement Method

Ampere's Law: \[\oint_L \vec{dB} \cdot d\vec{l} = \mu_0 \delta I \]

Faraday Rotation Fluctuation:
\[\delta \Psi = c_F \int n_0 \delta B \cdot d\vec{l} \approx c_F n_0 \int \delta B \cdot d\vec{l} \]

\[\oint L \delta B \cdot d\vec{l} \approx \left[\int \delta B_z \, dz \right]_{x_1} - \left[\int \delta B_z \, dz \right]_{x_2} \]

\[\approx \mu_0 \delta I \phi = \frac{\delta \Psi_1 - \delta \Psi_2}{c_F n_0} \]

Loop between polarimeter chords is equivalent to a Rogowski coil measurement

Ding, Brower et al. PRL (2003)
Measured Magnetic and Current Density Fluctuation Profiles

\((m,n)=(1,6)\) resistive tearing mode

Spatially localized in core, peaks at resonant surface.

\(\frac{\delta B}{B} \sim 1\%\)

\(r=r_{q(1,6)}\)
Magnetic Fluctuation-Induced Charge Flux

\(\frac{\delta j_{\phi}}{J_0} \sim 6\% \)

\((m,n)=(1,6) \) tearing mode

\(\delta j_{\phi} \& \delta b_r \) peak at crash

Phase deviates from \(\pi/2 \) at crash

\(\Gamma_q \neq 0 \) at crash

non-ambipolar flux
Measured Charge Flux at sawtooth crash in MST

\[\Gamma_q = \frac{\langle \tilde{j}_{\parallel} \tilde{b}_r \rangle}{eB} = \frac{1}{eB nB} \frac{R}{(k \cdot \tilde{B})} < \frac{1}{r} \tilde{b}_r \frac{\partial}{\partial r} r \tilde{b}_\theta > \geq \frac{1}{eB B} \left(1 - \frac{m}{nq(r)} \right) < \tilde{j}_\phi \tilde{b}_r > \]

\[\frac{\partial}{\partial r} < \delta b_r \delta b_\theta > \Rightarrow \frac{1}{\mu_0} < \tilde{j}_\phi \tilde{b}_r > \]

Maxwell Stress

Charge Flux

\[\frac{\Gamma_q}{\Gamma_{Particle}} \leq 1\% \]

Charge flux is radially localized and changes sign across resonant surface
Charge Transport and Radial Electric Field

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0, \quad \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \quad \Rightarrow \quad \varepsilon_0 \frac{\partial \vec{E}_r}{\partial t} = \sum_j q_j \Gamma_r^j \]

\[\frac{\langle \vec{j}_r \parallel \vec{b}_r \rangle}{B} \rightarrow 1 \sim 4 \text{ [A/m}^2\text{]} \text{ at the core (FIR Faraday)} \]

\[\Delta \tilde{E}_r = \int \frac{\langle \vec{j}_r \parallel \tilde{\vec{b}}_r \rangle}{\varepsilon_0 B} dt \]

Leads to a huge electric field, \(\sim 50 \text{ MV/m in core} \)

However, shielding occurs due to ion polarization current

\[\sum_j q_j \Gamma_r^j \approx -\varepsilon_0 \left(\frac{c}{V_A} \right)^2 \frac{\partial \vec{E}_r}{\partial t} - \frac{\langle \vec{j}_r \parallel \tilde{\vec{b}}_r \rangle}{B} - \frac{\mu}{B} \nabla^2 V_{E \times B} \]

- Ion polarization drift
- Magnetic charge flux
- Classical charge flux (damping from collisions)

Classical charge flux arises from radial flow due to \(\mathbf{F} \times \mathbf{B} \) drift
- \(\mathbf{F} \) viscous force perpendicular to \(\mathbf{B} \)
- \(\mu \) perpendicular viscosity coefficient
- \(V_{E \times B} \) fluctuation-induced mean flow

Radial electric field is established due to non-ambipolar transport,

but electric field is reduced by \(10^4 \) due to shielding by the ion polarization drift.
Localized Radial Electric Field and ExB Flow

(1) ExB generates flow and flow shear

(2) Flow is toroidally and poloidally symmetric (m=0,n=0) zero-frequency zonal flow

(3) No net momentum change
Charge transport and mode-Mode Coupling

\[r_k^1 \pm r_k^2 = r_k^3 \]

\[\begin{pmatrix} 1 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

1. Phase angle between \(\delta j \) & \(\delta b \) \(\sim \pi/2 \)
2. \(\Gamma_q \) reduced x5

Charge transport maximum during nonlinear mode-mode coupling
Measurements indicate the following:

- Tearing mode
 \[\nabla J_{\parallel}(r) \rightarrow \delta \vec{B}, \delta \vec{J} \]

- Nonlinear Mode coupling
- Non-ambipolar Charge Transport \(<\delta j_{\parallel}/b_r>\)
 - Electric Field and Flow shear
 - Zonal flow

implications