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Introduction

Magnetic and Current Density fluctuations play an important role
In transport and plasma relaxation for the Reversed Field Pinch (RFP) and
tokamak configurations
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nonlinear mode interactions




g Profile and Core Magnetic Fluctuation Spectrum
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Tearing modes and broadband magnetic turbulence
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Magnetic Fluctuation-Driven Charge Flux

Fluctuation-Induced Particle flux
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Magnetic Fluctuation-Driven Charge Flux and Maxwell Stress
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Fast polarimeter measures core mean and fluctuating B & J
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Current Fluctuation Measurement Method

Ampere's Law : (_de§ odl = 10
Faraday Rotation Fluctuation:
=c, [ neB edl ~c.n, [ Bedl

Plasma

Loop between polarimeter

chords Is equivalent to a

Rogowski coil measurement
Ding, Brower et al. PRL (2003)




Measured Magnetic and Current Density Fluctuation Profiles

(m,n)=(1,6) resistive tearing mode

spatially localized in core,
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Magnetic Fluctuation-Induced Charge Flux
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Measured Charge Flux at sawtooth crash in MST
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Charge flux is radially localized and changes
sign across resonant surface



Charge Transport and Radial Electric Field
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Aﬁr — j = J//t|)3r >dt Leads to a huge electric field, ~50 MV/m in core
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However, shielding occurs due to ion polarization current
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lon polarization drift magnetic charge classical charge flux
flux (damping from collisions)

Classical charge flux arises from radial flow due to FxB drift
F viscous force perpendicular to B
u perpendicular viscosity coefficient

Vg fluctuation-induced mean flow

Radial electric field is established due to non-ambipolar transport,

but electric field is reduced by 10% due to shielding by the ion polarization drift.



Localized Radial Electric Field and ExB Flow
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Peak occurs at sawtooth crash
Charge flux generates a local E, with spatial scale
~5 cm that changes sign across resonant surface

(1) ExB generates flow and flow shear

(2) Flow is toroidally and poloidally symmetric (m=0,n=0) zero-frequency zonal flow

(3) No net momentum change



Charge transport and mode-Mode Coupling

,U) | | | | | | |
‘T'E with Ky(m=0,n=1)
o without k;(m=0,n=1)
O
= e
o T ' I ' T ! + —
— -1.0 0.0 1.0 kg £k, =k,
Time [ms]
0.2_1 | | | |
202 —— 1) (1) (0
7 O — P=0 7) \6) \1
o 0.0-

1.0 00 1.0
Time [ms]

1. Phase angle between o & b ~ /2
2. I reduced x5

Charge transport maximum during nonlinear mode-mode coupling



Summary

Measurements indicate the following:
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Electric Field and Flow shear
Zonal flow
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