Modeling of Active Control on KSTAR

Oksana Katsuro-Hopkins¹, S.A. Sabbagh¹, J.M. Bialek¹, H.K. Park², J.Y. Kim³, K.-I. You³, A.H. Glasser⁴, L.L. Lao⁵

¹Department of Applied Physics, Columbia University, New York, NY, USA

²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

³Korea Basic Science Institute, Daejeon, Korea

⁴Los Alamos National Laboratory, Los Alamos, NM, USA

⁵General Atomics, San Diego, CA, USA

Workshop on Active Control of MHD Stability

November 18-20, 2007

Columbia University, New York, NY

Numerical design study to optimize advanced stability of KSTAR merging present experimental results & machine design

Motivation

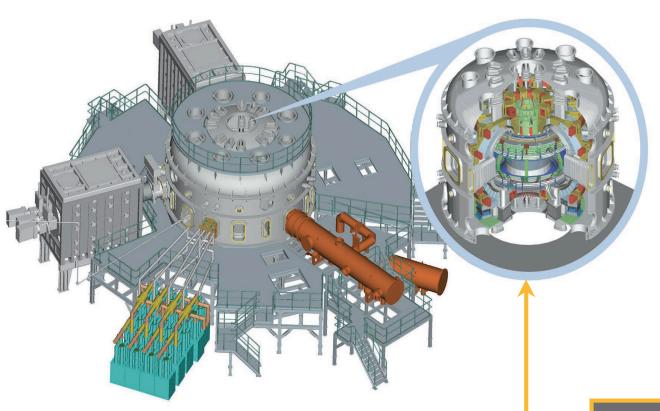
Design optimal global MHD stabilization system for KSTAR with application to future burning plasma devices

Outline

- Free boundary equilibrium calculations
- Ideal stability operational space for experimental profiles
- RWM stability and VALEN-3D modeling
- Advanced feedback control algorithm and performance

^{*}O.Katsuro-Hopkins at al., Nucl. Fusion **47** (2007) 1157-1165.

Korea Superconducting Tokamak Advanced Research will study steady-state advanced tokamak operation & technology

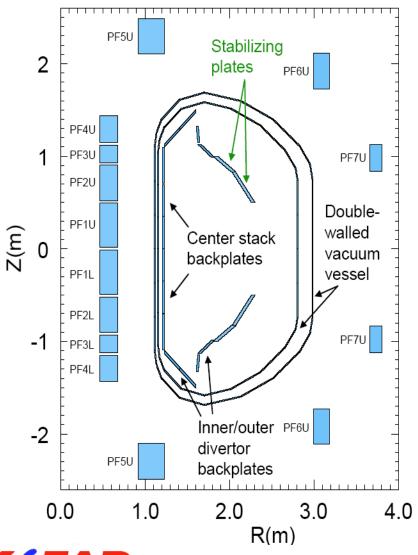


Parameters:

- R 1.8m
- a 0.5 m
- B_{to} 3.5 T
- τ_{pulse} 300 s
- I_p 2.0 MA
- T_i 100~300MC
- Magnet:
 - □ TF: Nb3Sn,
 - PF : NbTi

KSTAR 주장치

KSTAR configuration used in EFIT calculations



- EFIT industry-standard tool
 - Free-boundary equilibria
 - Expandable range of equilibria
- Data from KSTAR design drawings
- Passive stabilizers/vacuum vessel included.
 - Important for start up studies
 - Reconstructions during events that change edge current (e.g. ELMs)

Equilibrium variations produced to scan (I_i, β_n)

Boundary shape

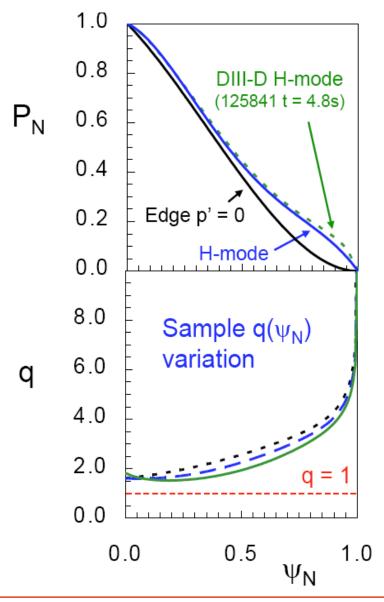
- □ Free-boundary equilibria with high shaping $\kappa \sim 2, \delta \sim 0.8$
- Shaping coil currents constrained to machine limits

Pressure profile

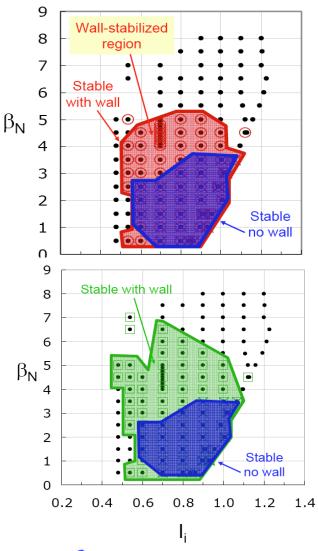
- □ Generic "L-mode", edge p'=0
- H-mode, modeled from DIII-D

q profile

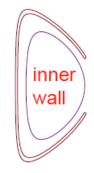
- Monotonic to mild shear reversal with q₀>1 and (q₀-q_{min})<1
- Variations in (I_i,β_n) produced
 - $0.5 \le l_i \le 1.2; 0.5 \le \beta_n \le 8.0$



Ideal stability(DCON): conducting wall allows significant passive stabilization for n=1 H-mode pressure profile



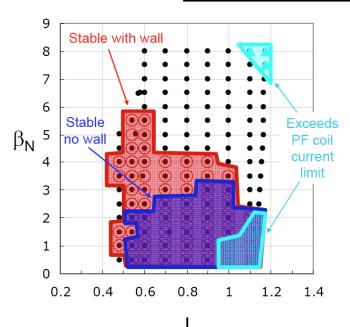
- "inner" wall used
- Wall-Stabilized β_n is a factor of two greater then for equilibrium without wall at $l_i \sim 0.7$



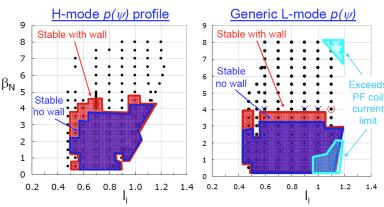
- Wall-Stabilized β_n from DCON agrees with VALEN-3D value
- "outer" wall used
- Wall-Stabilized $\beta_n > 6.5$ (larger than the result using "inner" wall at $I_i \sim 0.7$)

• Optimistic, but does not agree with VALEN-3D. "Inner" wall is more realistic and should be used in DCON analysis

L-mode pressure profile has large n=1 stabilized region



- "inner" wall used
- Wall-Stabilized region at lowest l_i (Unfavorable for n=0 stabilization)
- Possible difficulty to access with L-mode confinement.

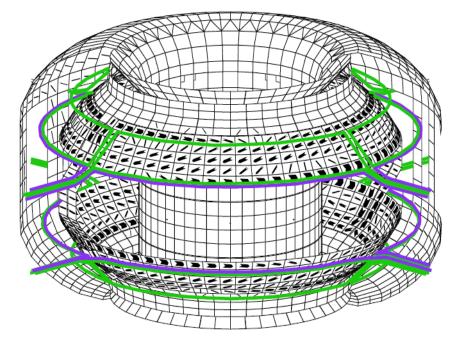


- n=2 stability has higher no-wall & lower with-wall limits than n=1 for H-mode and L-mode pressure profile
 - Internal n=2 modes were observed in NSTX during n=1 active RWM stabilization.

inner wall

Conducting hardware, IVCC set up in VALEN-3D* based on engineering drawings

n=1 RWM passive stabilization currents

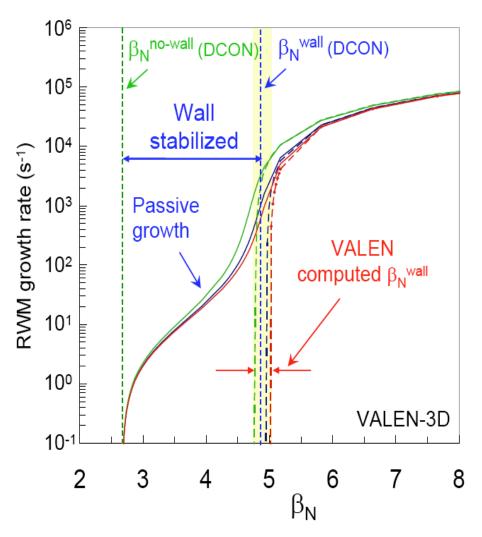


IVCC (RWM) control coils (upper,middle,lower)

*Bialek J. et al 2001 Phys. Plasmas 8 2170

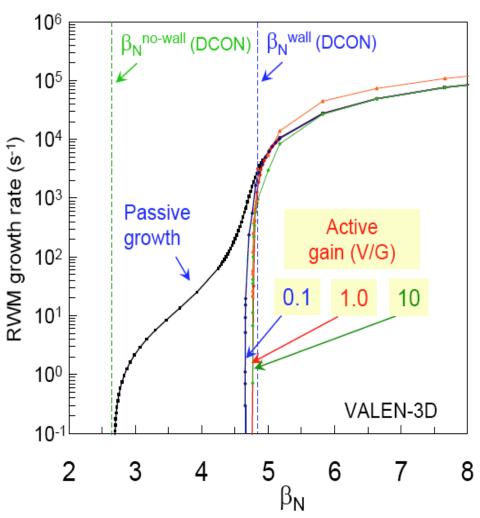
- Conducting structures modeled
 - Vacuum vessel with actual port structure
 - Center stack backplates
 - Inner and outer divertor back-plates
 - Passive stabilizer
 - PS Current bridge
- Stabilization currents dominant in PS
 - 40 times less resistive than nearby conductors.

VALEN 3-D code reproduces n=1 DCON β_n ideal wall limit



- Important cross-check VALEN-3D/DCON calibration
- Equilibrium β_n scan with I_i =0.7 H-mode pressure profile
- DCON <u>n=1</u> β_n limits:
 - $\beta_n^{\text{no-wall}} = 2.6$
 - $\beta_n^{\text{wall}} = 4.8$
- VALEN-3D n = 1 β_n^{wall}
 - □ $4.77 < \beta_n^{\text{wall}} < 5.0$
 - Range generated by various RWM eigenfunctions from equilibria near β_n = 5.

IVCC allows active n=1 RWM stabilization near ideal wall.



 Active n=1 RWM stabilization capability with

$$C_{\beta} = \frac{\beta_n - \beta_n^{no wall}}{\beta_n^{wall} - \beta_n^{no wall}} > 98\%$$

- Optimal ability for mode stabilization
- Mid-plane IVCC used
- Equilibrium β_n scan with I_i =0.7 H-mode pressure profile
- Computed β_n limits

$$\beta_n^{\text{no-wall}} = 2.56$$

$$\beta_n^{\text{wall}} = 4.76$$

Power estimates bracket needs for KSTAR RWM control

Proportional gain controller

White noise (1.6-2.0G RMS)

NSTX 120047 ΔB_p sensors

Unloaded IVCC

L=10µH R=0.86mOhm L/R=12.8ms **C**_β 80%

95%

(RMS values)

$I_{IVCC}(A)$	$V_{IVCC}(V)$	$P_{IVCC}(W)$
30	1.6	45
41	2.0	82

(RMS values)

$I_{IVCC}(A)$	$V_{IVCC}(V)$	$P_{IVCC}(W)$
362	0.7	253
430	0.8	307

FAST IVCC circuit
L=13µH
R=13.2mOhm
L/R=1.0ms

80% 95%

20.9	1.56	30.0
28.3	1.78	50.6

1.9e3	24.9	62e3
9e3	119	1.8e6

Power estimates bracket needs for KSTAR RWM control

Proportional gain controller

LQG controller

White noise (1.6-2.0G RMS)

NSTX 120047 ΔB_D sensors

Unloaded IVCC

L=10μH R=0.86mOhm L/R=12.8ms

 C_{β}

80% 95% (RMS values)

 $\underline{I}_{IVCC}(A)$ $V_{IVCC}(V)$ $P_{IVCC}(W)$ 30 / 29 1.6 / 0.8 45 / **24** 41 / 35 2.0 / 0.9 82 / 34

(RMS values)

 $I_{IVCC}(A)$ $V_{IVCC}(V)$ $P_{IVCC}(W)$ 362 253 0.7 430 0.8 307

FAST IVCC circuit L=13μH

R=13.2mOhm L/R=1.0ms

80% 95%

20.9 1.56 30.0 28.3 1.78 50.6

1.9e3	24.9	62e3
9e3	119	1.8e6

- Initial results using advanced Linear Quadratic Gaussian (LQG) controller yield factor of 2 power reduction for white noise.
- LQG controller consists of two steps:
 - Balanced Truncation of VALEN state-space for fixed β_n
 - Optimal controller and observer design based on the reduced order system

State-space control approach may allow superior feedback performance

VALEN circuit equations after including plasma stability effects the fluxes at the wall, feedback coils and plasma are given by

$$\begin{split} \vec{\Phi}_w &= \vec{\mathbf{L}}_{ww} \cdot \vec{I}_w + \vec{\mathbf{L}}_{wf} \cdot \vec{I}_f + \vec{\mathbf{L}}_{wp} \cdot I_d \\ \vec{\Phi}_f &= \vec{\mathbf{L}}_{fw} \cdot \vec{I}_w + \vec{\mathbf{L}}_{ff} \cdot \vec{I}_f + \vec{\mathbf{L}}_{fp} \cdot I_d \\ \boldsymbol{\Phi}_p &= \vec{\mathbf{L}}_{pw} \cdot \vec{I}_w + \vec{\mathbf{L}}_{pf} \cdot \vec{I}_f + \vec{\mathbf{L}}_{pp} \cdot I_d \end{split}$$

Equations for system evolution are given by

$$\begin{pmatrix} \vec{\mathcal{L}}_{ww} & \vec{\mathcal{L}}_{wf} & \vec{\mathcal{L}}_{wp} \\ \vec{\mathcal{L}}_{fw} & \vec{\mathcal{L}}_{ff} & \vec{\mathcal{L}}_{fp} \\ \vec{\mathcal{L}}_{pw} & \vec{\mathcal{L}}_{pf} & \vec{\mathcal{L}}_{pp} \end{pmatrix} \cdot \frac{d}{dt} \begin{pmatrix} \vec{I}_{w} \\ \vec{I}_{f} \\ I_{d} \end{pmatrix} = \begin{pmatrix} \vec{R}_{w} & 0 & 0 \\ 0 & \vec{R}_{f} & 0 \\ 0 & 0 & \vec{R}_{d} \end{pmatrix} \cdot \begin{pmatrix} \vec{I}_{w} \\ \vec{I}_{f} \\ I_{d} \end{pmatrix} + \begin{pmatrix} \vec{0} \\ \vec{V}_{f} \\ 0 \end{pmatrix}$$

• In the <u>state-space form</u> $\vec{x} = \vec{A}\vec{x} + \vec{B}\vec{u}$ $\vec{y} = C\vec{x}$

$$\vec{\dot{x}} = \vec{A}\vec{x} + \vec{B}\vec{u}$$

$$\vec{y} = C\vec{x}$$

where
$$\vec{x} = (\vec{I}_w \ \vec{I}_f \ I_d)^T$$
; $\vec{A} = -\vec{L}^{-1} \cdot \vec{R}$; $\vec{B} = \vec{L}^{-1} \cdot \vec{I}_{cc}$; $\vec{u} = \vec{V}_f$

& measurements $\vec{y} = \vec{\Phi}_s$ are sensor fluxes. State-space dimension ~1000 elements!

• Classical control law with proportional gain defined as $\vec{u} = -\vec{G}_n \vec{y}$

Balanced Truncation significantly reduces

VALEN state-space

$$\vec{x} = \vec{A}\vec{x} + \vec{B}\vec{u}$$

$$\vec{y} = C\vec{x}$$

 Measure of system controllability and observability is given by controllability and observability grammians for <u>stable</u> Linear Time-Invariant (LTI) Systems

$$\Gamma_c = \int_0^\infty e^{A\tau} B B^T e^{A^T \tau} d\tau \qquad \Gamma_o = \int_0^\infty e^{A^T \tau} C^T C e^{A\tau} d\tau$$

Can be calculated by solving continuous-time Lyapunov equations:

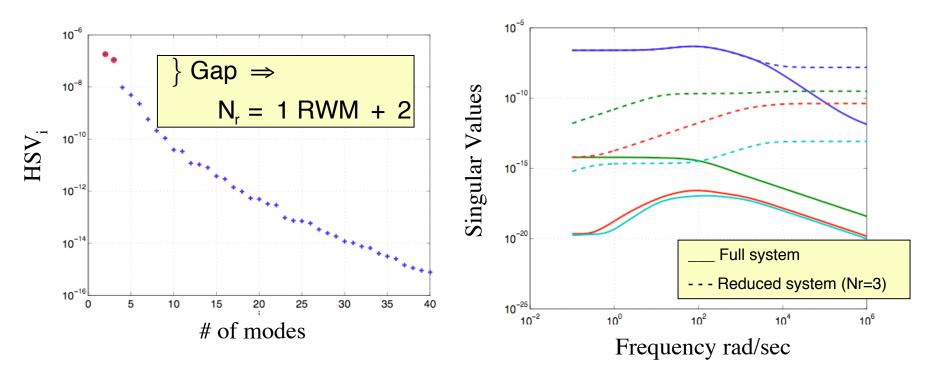
$$A\Gamma_c + \Gamma_c A^T + BB^T = 0 \qquad A^T \Gamma_o + \Gamma_o A + C^T C = 0$$

- Balanced realization exists for every controllable & observable system $\Gamma_c = \Gamma_o = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_n \end{pmatrix}, \quad \sigma_i > \sigma_j$ for i > j
- Balanced truncation reduces VALEN state space from several thousand elements to ~15 or less

$$\vec{X} = (\vec{X}_1, \vec{X}_2)^T \qquad \begin{pmatrix} \dot{\vec{x}}_1 \\ \dot{\vec{x}}_2 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} \vec{x}_1 \\ \vec{x}_2 \end{pmatrix} + \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} \vec{u}$$

$$\vec{y} = (C_1 \ C_2) \begin{pmatrix} \vec{x}_1 \\ \vec{x}_2 \end{pmatrix} + D\vec{u}$$

HSV spectrum of KSTAR VALEN state-space suggests a reduction of stable part of the system to just 2 balanced states



- LQG controller uses 4 central IVCC & 16 mid-plane poloidal sensors
- Clear gap in HSV spectrum
- Largest SV includes the full system frequency response up to an RWM passive growth rate.

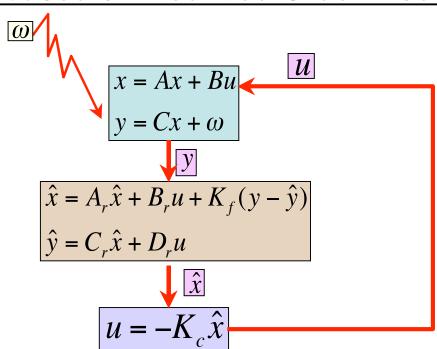
Closed System Equations with Optimal Controller and Optimal Observer based on Reduced Order Model

Measurement noise

Full order VALEN model

Optimal observer

Optimal controller

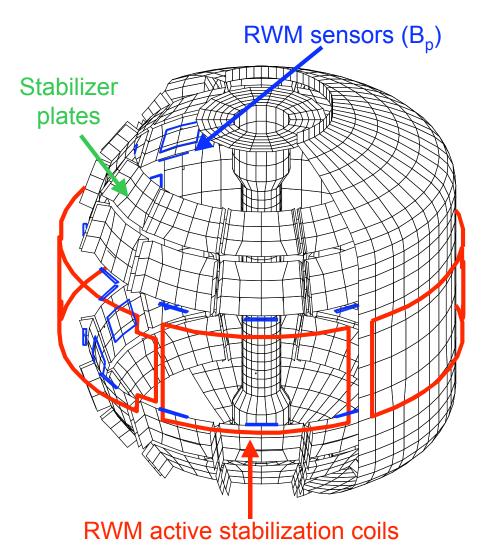


$$\begin{vmatrix} \dot{x} \\ \dot{\hat{x}} \end{vmatrix} = \begin{pmatrix} A & -BK_cC_r \\ K_fC & F \end{pmatrix} \begin{pmatrix} x \\ \hat{x} \end{pmatrix} + \begin{pmatrix} 0 \\ K_f \end{pmatrix} \omega$$
$$F = A_r - K_fC_r - (B_r - K_fD_r)K_cC_r$$

Closed loop continuous system allows to

- Test if Optimal controller and observer stabilizes original full order model
- \Box Verify robustness with respect to β_n
- Estimate RMS of steady-state currents, voltages and power

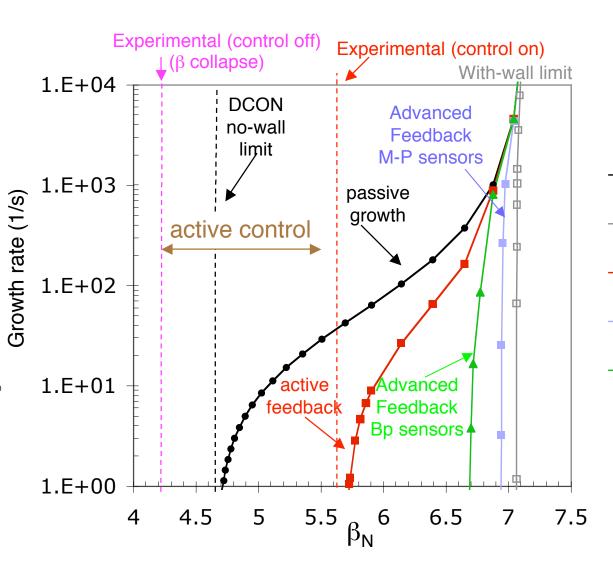
Advanced controller methods planned to be tested on **NSTX** with future application to KSTAR



- VALEN NSTX Model includes
 - Stabilizer plates for kink mode stabilization
 - External mid-plane control coils closely coupled to vacuum vessel
 - Upper Bp sensors in actual locations
 - Compensation of control field from sensors
 - Experimental Equilibrium reconstruction (including MSE data)
- Present control system on NSTX uses Proportional Gain

Advanced control techniques suggests significant feedback performance improvement for NSTX up to $\beta_n/\beta_n^{\text{wall}} = 95\%$

- Classical proportional feedback methods
 - VALEN modeling of feedback systems agrees with experimental results
 - RWM was stabilized up to $\beta_n = 5.6$ in experiment.
- Advanced feedback control may improve feedback performance
 - Optimized state-space controller can stabilize up to $C_{\beta}=87\%$ for upper Bp sensors and up to $C_{\beta}=95\%$ for mid-plane sensors
 - Uses only15 modes for optimal observer and controller design



Next steps and future work on the KSTAR stability analysis

- Expand equilibrium / ideal stability analysis as needed
 - Collaborate on equilibrium reconstructions of first plasmas
- Closer definition of RWM control system circuit by interaction with KSTAR engineering team
- Improved noise model for KSTAR sensor noise
- LQG controller with plasma rotation for KSTAR
- LQG controller tests on NSTX with application to KSTAR RWM control system design
- Critical latency testing for KSTAR RWM control

KSTAR is capable of producing longpulse, high β_n stability research

- Machine designed to run high β_n plasmas with low l_i and significant plasma shaping capability
- Large wall-stabilized region to kink/ballooning modes with $\beta_n/\beta_n^{\text{no-wall}} = 2$ at highest β_n predicted for the device
 - Co-directed NBI, passive stabilizers allow kink stabilization
- Active IVCC mode control system provide strong RWM control
 - □ IVCC design allows active n= 1 RWM stabilization at very high C_{β} > 98%
- Fast IVCC circuit for stabilization is possible at reasonable power levels

Optimal controller and observer based on reduced order VALEN model reduce power and achieve higher β_n

Controller:
$$u = -K_c \hat{x}$$

Minimize Performance Index: $J = \int_{t}^{T} \left(\hat{\vec{x}}'(\tau) Q_r(\tau) \hat{\vec{x}}(\tau) + \vec{u}'(\tau) R_r(\tau) \vec{u}(\tau) \right) d\tau \rightarrow \min$

 Q_r , R_r - state and control weighting matrix,

Controller gain for the steady-state can be calculated as

$$K_c = R^{-1}B_r^T S$$

where S is solution of the controller

Riccati equation

$$SA_r + A_r^T S - SB_r R_r^{-1} B_r^T S + Q_r = 0$$

Observer: $\dot{\hat{x}} = A_r \hat{x} + B_r u + K_f (y - C_r \hat{x})$

Minimize error covariance matrix

$$E\{(x-\hat{x})(x-\hat{x})^T | y(\tau), \tau \le t\} \rightarrow \min$$

where $K_f = PC'W^{-1}$ is Kalman Filter gain and

P is solution of observer

Riccati equation

$$A_r P + P A_r^T - P C_r^T W^{-1} C_r P + V^T = 0$$

V, W plant and measurement noise covariance matrix.

Noise on RWM sensors sets control system power

Gaussian white noise

- ~1.5Gauss RMS, based on noise in DIII-D RWM B_p sensors
- Minimum estimate of control power consumption
 - Perfect response to RWM
 - No other coherent modes

Experimental sensor input

- NSTX B_p sensor during RWM active stabilization
- Maximum estimate of control system power consumption
 - DC offset from resonant field amplification; stray field from passive plate currents
 - The ΔB/B₀ larger in ST than at higher apsect ratio

