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*VALEN model with rotation includes a
toroidal torque balance

*We investigate the effect of feedback with
self consistent torque

*Optimal phasing for feedback determined,
essentially no degradation in performance



VALEN rotation includes toroidal torque ( I" ) balance*

I_‘plasma—plasma mode + 1—‘plasma mode-external O
1—‘plasma-plasma mode functlon( wplasma - Qplasma mode)

‘Since the magnitude of the torque has many uncertainties,
the equations will be formulated so empirical expressions
for torque may be used.’

We do not predict I

plasma-plasma mode

The VALEN dimensionless parameter ‘a’ is a normalized
torque. The VALEN parameters ‘s’ & ‘a’ together determine
growth rate y and rotation Q of the plasma mode.

* See Physics of Plasmas, Vol 6, No. 8, Aug. 1999, pg.3180
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Torque and energy have same units so a is dimensionless

If we understood the dissipation model and can calculate the
torque, then we can make predictions for critical plasma
rotation for a given rotation profile shape.



VALEN-ROTATION with a torque balance is more realistic

Q old VALEN results used a single unstable mode with a
fixed toroidal orientation, no change in toroidal orientation
of the plasma mode was allowed, toroidal torque was
ignored, plasma mode could change growth rate but could
not change its initial toroidal orientation.

JVALEN-ROTATION uses two copies of a single unstable
mode, start with /2 difference in initial position. The

application of torque determines growth rate(s), and
rotation or orientation(s). (i.e., choose ‘o’ and possibly

apply feedback)

JVALEN-ROTATION with field errors requires a time
dependent calculation, we report here only eigenvalue
results (without error fields).



We demonstrate VALEN-ROTATION with our most complete VALEN
model of ITER,using 7 mid plane port plug control coils

model includes double wall vacuum vessel (45 ports), blanket modules,
control coils, and interior Bp sensors for mode detection

mid and top port plug coils shown in red



ITER passive growth rate with zero mode rotation (‘o’=0).
We now add rotation by doing a scan in normalized torque ‘o
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VALEN prediction of growth rate and mode rotation

for our most complete ITER model, scenario 4 used

Growth rate at
a=0 is ~ growth
rate from no-

rotation VALEN

calculation

All cases
shown may
be stabilized
by adequate
rotation

Re(y) = Mode growth rate - solid lines
Im(y) = Mode rotation - dashed lines
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Different presentation of same results
VALEN prediction of growth rate vs. mode rotation

lines of constant §,('s’) as mode torque ‘o’ increases
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VALEN prediction of growth rate and mode
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Only cases
with B, <5.22,
B, below
ideal wall
limit are
stabilized by
rotation

VALEN prediction of growth rate and mode

rotation near ideal wall limit
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RWM growth/rotation modeled with VALEN

consistent with measurements on NSTX
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We use an ‘F-matrix’ approach to adjust feedback
logic for toroidal phase of plasma mode
.e., we do a least square fit to n=1 measured by a B,
sensor array.

Measure B, or @, in array of sensors (same radius, different toroidal position)

Identify magnitude & phase of sensor signals (n=1) here

Pick phase difference, 6, desired between sensors and control coil V

Choose gain Gp and run feedback,

Vee 1)} 0 = Gl F(8) ] 1 Premer (1)1,



We use an ‘F-matrix’ approach to adjust feedback
logic for toroidal phase of plasma mode i.e., we do a
least square fit to n=1 measured by a Bp sensor array.

S % Sil’l(l’l sk ¢1sensor) + C % COS(I’l sk ¢1sensor) _ (I)i;ensor

SEsin(n* g) + C* cos(n * i) = @ [0, [A]NXZ{S} ={o )
. 2x1

S * Sln(n * ¢;}ensor> + C %k COS(n sk ¢1~i’e’1501”) — (I).]S\fnsor { -

Pick phase § between sensors and coil V
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VALEN results with rotation and feedback (G,=108 [viw)).
Growth rate varies with F-matrix phase and 3,,. The

plasma has a=0 when feedback is applied
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Feedback applies a torque which results in mode rotation.
VALEN with rotation and feedback (G,=10° [v/w]), results vary

with F-matrix phase and §3,
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VALEN-3D analysis demonstrates optimal relative
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Conclusions & next steps

*VALEN with rotational stabilization includes a
toroidal torque balance

*Have found good agreement with NSTX data

*We have investigated the effect of feedback using the
7 mid plane port plug coils with self consistent torque

in the VALEN ITER model and found no degradation
of feedback performance with a = 0.

*Can now explore combination of a > 0 with feedback
for ITER port plug control coils.

*New capabilities 1n the time domain now available.

Could examine ‘ELLM’ driven RFA with rotation in
torque balance.
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