Progress on understanding rotational RWM stabilization in DIII-D

by H. Reimerdes¹

with

A.M. Garofalo,¹ R.J. La Haye,² M.J. Lanctot,¹ M. Okabayashi,³ E.J. Strait,² M.S. Chu,² B. Hu,⁴ Y. In,⁵ G.L. Jackson,² Y.Q. Liu,⁶ G.A. Navratil¹ and W.M. Solomon³

¹Columbia University, New York, New York, USA
 ²General Atomics, San Diego, California, USA
 ³Princeton Plasma Physics Lab., Princeton, New Jersey, USA
 ⁴University of Rochester, Rochester, NY, USA
 ⁵FAR-TECH, Inc., San Diego, California, USA
 ⁶Chalmers University of Technology, Göteborg, Sweden

Presented at the 12th Workshop on MHD Stability Control New York, NY

November 18-20, 2007

Columbia University

Sustained resistive wall mode (RWM) stabilization with very low plasma rotation obtained with balanced NBI

- Toroidal rotation of less than 20 krad/s across the entire profile can be sufficient for RWM stability
 - Corresponds to less than 10% of the ion thermal velocity or less than 1% of the Alfvén velocity
- Correction of n=1 intrinsic error field is essential for stability at low rotation

Outline

- 1. Rotation thresholds in wall-stabilized discharges with good error field correction and low NBI torque
 - Diamagnetic rotations of (measured) carbon impurities and main ions are of the order of the measured rotation threshold

2. Comparison of observed rotation threshold with linear RWM theory

 Kinetic damping models with and without taking into account the precession of trapped particles predict stability even below the measured rotation

3. Relation between RWM onset and tearing mode onset

 Low rotation wall-stabilized plasmas are susceptible to 2/1 tearing modes

4. Summary/Conclusions

Outline

- 1. Rotation thresholds in wall-stabilized discharges with good error field correction and low NBI torque
 - Diamagnetic rotations of (measured) carbon impurities and main ions are of the order of the measured rotation threshold
- 2. Comparison of observed rotation threshold with linear RWM theory
 - Kinetic damping models with and without taking into account the precession of trapped particles predict stability even below the measured rotation
- 3. Relation between RWM onset and tearing mode onset
 - Low rotation wall-stabilized plasmas are susceptible to 2/1 tearing modes
- 4. Summary/Conclusions

RWM observed at high β AND low rotation

• Various trajectories in $\Omega_{\phi}\text{-}\beta$ space lead to instability

Rotation thresholds in low NBI torque plasmas in DIII-D and JT-60U are in surprisingly good agreement

• Reduce NBI torque until RWM becomes unstable

 Evaluating the magnitude of the rotation threshold at the q=2 surface results in good agreement

Rotation threshold too low to neglect diamagnetic rotation/difference between ion species

- Charge exchange recombination (CER) spectroscopy measures carbon impurity rotation
- $\Omega_{\phi} = V_{\phi}/R$ is not a flux function
 - Assume $\nabla \cdot \mathbf{V} = 0$, $V_r = 0$ and force balance

 $\mathbf{V} = k(\boldsymbol{\psi})\mathbf{B} + R\Omega(\boldsymbol{\psi})\mathbf{e}_{\boldsymbol{\phi}}$

- Poloidal flow leads to $k \neq 0$
- Radial force balance links species j via the radial electric field E_r

$$\Omega_{j} = \frac{E_{r}}{RB_{\theta}} - (Z_{j}n_{j}e)^{-1}\frac{dP_{j}}{d\psi}$$

$$\uparrow \qquad \uparrow$$

$$\omega_{E} \qquad \omega_{\star i,j}$$

NATIONAL FUSION FACILITY

Rotation threshold too low to neglect diamagnetic rotation/difference between ion species

- Charge exchange recombination (CER) spectroscopy measures carbon impurity rotation
- $\Omega_{\phi} = V_{\phi}/R$ is not a flux function
 - Assume $\nabla \cdot \mathbf{V} = 0$, $V_r = 0$ and force balance

 $\mathbf{V} = k(\boldsymbol{\psi})\mathbf{B} + R\Omega(\boldsymbol{\psi})\mathbf{e}_{\boldsymbol{\phi}}$

- Poloidal flow leads to $k \neq 0$
- Radial force balance links species j via the radial electric field E_r

$$\Omega_{j} = \frac{E_{r}}{RB_{\theta}} - (Z_{j}n_{j}e)^{-1}\frac{dP_{j}}{d\psi}$$

$$\uparrow \qquad \uparrow$$

$$\omega_{E} \qquad \omega_{\star i,j}$$

Rotation threshold too low to neglect diamagnetic rotation/difference between ion species

- Charge exchange recombination (CER) spectroscopy measures carbon impurity rotation
- $\Omega_{\phi} = V_{\phi}/R$ is not a flux function
 - Assume $\nabla \cdot \mathbf{V} = 0$, $V_r = 0$ and force balance

 $\mathbf{V} = k(\boldsymbol{\psi})\mathbf{B} + R\Omega(\boldsymbol{\psi})\mathbf{e}_{\boldsymbol{\phi}}$

- Poloidal flow leads to $k \neq 0$
- Radial force balance links species j via the radial electric field E_r

Role of rotation components studied by comparing thresholds in co- and counter-rotating plasmas

 NBI torque ramp-downs in similar co-rotating (with respect to I_P) and counter-rotating plasmas lead to RWM onsets

 Compare profiles before mode onset in co- and counter-rotating plasmas

 Compare profiles before mode onset in co- and counter-rotating plasmas

 Compare profiles before mode onset in co- and counter-rotating plasmas

- Compare profiles before mode onset in co- and counter-rotating plasmas
- Best agreement in magnitude of ω_{E}
 - Similar magnitude at all resonant surfaces

- Compare profiles before mode onset in co- and counter-rotating plasmas
- Best agreement in magnitude of ω_{E}
 - Similar magnitude at all resonant surfaces
- Caveats:
 - Neglect poloidal rotation
 - Assumes no symmetrybreaking mechanism
 - Rotation profiles do not vary for ρ>0.9

Outline

- 1. Rotation thresholds in wall-stabilized discharges with good error field correction and low NBI torque
 - Diamagnetic rotations of (measured) carbon impurities and main ions are of the order of the measured rotation threshold

2. Comparison of observed rotation threshold with linear RWM theory

- Kinetic damping models with and without taking into account the precession of trapped particles predict stability even below the measured rotation
- 3. Relation between RWM onset and tearing mode onset
 - Low rotation wall-stabilized plasmas are susceptible to 2/1 tearing modes
- 4. Summary/Conclusions

Slow growth makes RWM susceptible to various stabilization mechanisms

Soundwaves

- Finite parallel viscosity [Bondeson & Ward, PRL 1994]

Kinetic effects (wave-particle resonances)

- Transit frequency of passing particles
 [Bondeson & Chu, PoP 1996]
- Bounce frequency of trapped particles
 [Bondeson & Chu, PoP 1996]
- Precession frequency of trapped particles
 [Hu & Betti, PRL 2004]
- MHD effects
 - Shear Alfvén resonance [Zheng et al, PRL 2005]

$$\omega_{\rm t} \sim v_{\rm i,th}/R$$

$$\omega_{\rm b} \sim (r/R)^{1/2} v_{\rm i,th}/R$$

$$\omega_{\rm D} \sim (\rho_{\rm L}/\,r)^{1/2}\,v_{\rm i,th}/R$$

Compare experimental rotation threshold to linear RWM stability predictions

- MARS-F code [Liu et al, PoP 2000]
- Kinetic post-processor to PEST code [Hu et al, PoP 2005]

Semi-kinetic damping model in MARS-F predicts stability even below the "low" experimental threshold

• MARS-F assumes $\Omega >> \omega_{*i}, \omega_D$ (finite ω_{*i}, ω_D are being included [Chu, Liu, APS 2007]) \rightarrow use ω_E rotation

• Sound-wave damping predicts strong β -dependence, overestimates rotation threshold at high $\beta \rightarrow$ inconsistent with the experiment

Semi-kinetic damping model in MARS-F predicts stability even below the "low" experimental threshold

• MARS-F assumes $\Omega >> \omega_{*i}, \omega_D$ (finite ω_{*i}, ω_D are being included [Chu, Liu, APS 2007]) \rightarrow use ω_E rotation

- Sound-wave damping predicts strong β -dependence, overestimates rotation threshold at high $\beta \rightarrow$ inconsistent with the experiment
- Semi-kinetic damping underestimates rotation threshold
 - Requires additional physics to explain mode onset in DIII-D

Resonance with precession drift of trapped particles predicts stability at low or no rotation

Kinetic post-processor to PEST code takes into account finite ω_{*i} , ω_{D}

[Bo Hu et al, Sherwood 2007]

- Kinetic theory predicts low rotation threshold/no rotation to be stable
 - Requires additional physics to explain mode onset in DIII-D
- Shear Alfvén damping provides stability at high rotation
 - Need for stabilization mechanism at intermediate rotation values

Both kinetic models predict stability below the rotation threshold in DIII-D discharges with balanced NBI

	No rotation (Ω=0)	Low rotation ($\Omega < \Omega_{crit}$)	Intermediate rotation $(\Omega > \Omega_{crit})$	High rotation (Ω>>Ω _{crit})
DIII-D	Ś	unstable	stable	stable
MARS-F soundwave	unstable	unstable	unstable	stable
MARS-F semi- kinetic	unstable	stable	stable	stable
PEST kinetic postprocessor	stable	stable	stable	unstable

- Kinetic theory can explain the stability of low rotation, wall stabilized DIII-D discharges
- A satisfactory picture of the stability threshold at low rotation requires:
 - Additional physics to explain the mode onset and beta collapse (e.g. penetration of residual resonant error fields)
 - Resolution of discrepancies between the kinetic models

Outline

- 1. Rotation thresholds in wall-stabilized discharges with good error field correction and low NBI torque
 - Diamagnetic rotations of (measured) carbon impurities and main ions are of the order of the measured rotation threshold
- 2. Comparison of observed rotation threshold with linear RWM theory
 - Kinetic damping models with and without taking into account the precession of trapped particles predict stability even below the measured rotation
- 3. Relation between RWM onset and tearing mode onset
 - Low rotation wall-stabilized plasmas are susceptible to 2/1 tearing modes
- 4. Summary/Conclusions

Low rotation, high beta plasmas are also susceptible to n=1 rotating modes

- Mode is born rotating, but quickly (in the order of 10-100ms) locks to the vessel
 - Mode is thought to be a 2/1 (neoclassical) tearing mode

Rotation frequency of the n=1 rotating mode is consistent with a 2/1 tearing mode

• Rotation frequency of n=1 mode matches impurity and $\omega_{\rm E}$ rotation in the vicinity of the q=2 surface

—For $\omega_{rot}/(2\pi) \sim 2.2$ kHz ($\omega_{rot}\tau_w \sim 50$) wall behaves like an ideal conductor

Before observing the RWM the discharge has to pass through a region which is susceptible to tearing

- Onset of 2/1 tearing mode frequently observed at rotation values just above the RWM rotation threshold
 - Decrease of NTM beta threshold with decreasing rotation has been observed in sawtoothing plasmas [Buttery, APS invited 2007]

Before observing the RWM the discharge has to pass through a region which is susceptible to tearing

- Onset of 2/1 tearing mode frequently observed at rotation values just above the RWM rotation threshold
 - Decrease of NTM beta threshold with decreasing rotation has been observed in sawtoothing plasmas [Buttery, APS invited 2007]
- Is the non-rotating mode ("RWM") the same tearing mode that grows locked from the start?

The rotating *n*=1 mode has similar outboard pitch and ballooning structure as either mode in the locked phase

- Rotating and non-rotating modes have same 240Deg phase shift between R+1 and R-1
- Rotating and non-rotating modes have a similar ballooning character

Growth rates of non-rotating *n*=1 modes in low-torque plasmas do not agree with linear RWM theory

- Beta dependence of γ's with balanced
 NBI differ from γ's with magnetic braking
 - Why does magnetic braking yield γ's consistent with ideal MHD RWM predictions?

Summary/Conclusions

- RWM is stabilized despite a low NBI torque and low rotation
 - Reduction of error field is critical in obtaining stability at low rotation
- Even with error field correction a non-rotating n=1 mode becomes unstable when β exceeds the no-wall limit and the rotation drops below a threshold
 - At the threshold diamagnetic frequencies and the difference between impurity and main ion rotation are of the order of the measured rotation
- Linear kinetic models can predict stability at and below the low rotation threshold
 - Description of the mode onset would require additional physics
 - Kinetic models require benchmarking/resolution of discrepancies

Summary/Conclusions (cont.)

- Plasmas close to the rotation threshold are susceptible to *n*=1 tearing
 - Perturbation structures at the wall of rotating ("tearing") and nonrotating ("RWM") n=1 modes at high beta and low rotation are similar
 - Growth rates of non-rotating modes do not agree with the linear ideal MHD RWM model
- What is the relation between the ideal MHD RWM and resistive MHD in plasmas with rotation in the order of the diamagnetic drift frequency?
 - Do amplified residual error fields create an NTM seed at low rotation?
 - Does a Δ ' unstable island precede the ideal MHD RWM when it's stability boundary (including kinetic effects) is approached sufficiently slowly (in analogy to Brennan et al, PoP 2002)?
 - Do we simply observe a lowering of the NTM beta threshold with lower rotation independent of ideal MHD stability limits?

