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Sustained resistive wall mode (RWM) stabilization with
very low plasma rotation obtained with balanced NBI

• Toroidal rotation of less than 20 krad/s across the entire profile can be
sufficient for RWM stability
– Corresponds to less than 10% of the ion thermal velocity or less than

1% of the Alfvén velocity
• Correction of n=1 intrinsic error field is essential for stability at low rotation
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Outline

1. Rotation thresholds in wall-stabilized discharges with good error field
correction and low NBI torque
– Diamagnetic rotations of (measured) carbon impurities and main ions

are of the order of the measured rotation threshold

2. Comparison of observed rotation threshold with linear RWM theory
– Kinetic damping models with and without taking into account the

precession of trapped particles predict stability even below the
measured rotation

3. Relation between RWM onset and tearing mode onset
– Low rotation wall-stabilized plasmas are susceptible to 2/1 tearing

modes

4. Summary/Conclusions
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RWM observed at high β AND low rotation

• Various trajectories in Ωφ-β space lead to instability

β ramp-up at low torque Ωφ ramp-down at high β
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Rotation thresholds in low NBI torque plasmas
in DIII-D and JT-60U are in surprisingly good agreement

• Reduce NBI torque until RWM becomes unstable

• Evaluating the magnitude of the rotation threshold at the q=2 surface
results in good agreement

Courtesy of 
Dr. M. Takechi

DIII-D [E.J. Strait et al, PoP 2007]JT-60U [M. Takechi et al, PRL 2007]
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Rotation threshold too low to neglect diamagnetic
rotation/difference between ion species

• Charge exchange recombination
(CER) spectroscopy measures
carbon impurity rotation

• Ωφ = Vφ/R is not a flux function
– Assume ∇·V = 0, Vr=0 and force

balance

– Poloidal flow leads to k ≠ 0
• Radial force balance links species j

via the radial electric field Er
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Role of rotation components studied by comparing
thresholds in co- and counter-rotating plasmas

• NBI torque ramp-downs in similar co-rotating (with respect to IP) and
counter-rotating plasmas lead to RWM onsets



12th Workshop on MHD Stability Control, Nov 16-18, 2007

Comparison of profiles in co- and  counter-rotating
plasmas indicates importance of ωE for RWM stabilization

• Compare profiles before
mode onset in co- and
counter-rotating plasmas



12th Workshop on MHD Stability Control, Nov 16-18, 2007

Comparison of profiles in co- and  counter-rotating
plasmas indicates importance of ωE for RWM stabilization

• Compare profiles before
mode onset in co- and
counter-rotating plasmas



12th Workshop on MHD Stability Control, Nov 16-18, 2007

Comparison of profiles in co- and  counter-rotating
plasmas indicates importance of ωE for RWM stabilization

• Compare profiles before
mode onset in co- and
counter-rotating plasmas



12th Workshop on MHD Stability Control, Nov 16-18, 2007
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• Best agreement in
magnitude of ωE

– Similar magnitude at all
resonant surfaces
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Comparison of profiles in co- and  counter-rotating
plasmas indicates importance of ωE for RWM stabilization

• Compare profiles before
mode onset in co- and
counter-rotating plasmas

• Best agreement in
magnitude of ωE

– Similar magnitude at all
resonant surfaces

• Caveats:
– Neglect poloidal rotation
– Assumes no symmetry-

breaking mechanism
– Rotation profiles do not

vary for ρ>0.9



12th Workshop on MHD Stability Control, Nov 16-18, 2007

Outline

1. Rotation thresholds in wall-stabilized discharges with good error field
correction and low NBI torque
– Diamagnetic rotations of (measured) carbon impurities and main ions

are of the order of the measured rotation threshold

2. Comparison of observed rotation threshold with linear RWM theory
– Kinetic damping models with and without taking into account the

precession of trapped particles predict stability even below the
measured rotation

3. Relation between RWM onset and tearing mode onset
– Low rotation wall-stabilized plasmas are susceptible to 2/1 tearing

modes

4. Summary/Conclusions



12th Workshop on MHD Stability Control, Nov 16-18, 2007

Slow growth makes RWM susceptible to various
stabilization mechanisms

• Soundwaves
– Finite parallel viscosity [Bondeson & Ward, PRL 1994]

• Kinetic effects (wave-particle resonances)
– Transit frequency of passing particles  ωt ~ vi,th/R

[Bondeson & Chu, PoP 1996]

– Bounce frequency of trapped particles  ωb ~ (r/R)1/2 vi,th/R
[Bondeson & Chu, PoP 1996]

– Precession frequency of trapped particles ωD ~ (ρL/ r)1/2 vi,th/R
[Hu & Betti, PRL 2004]

• MHD effects
– Shear Alfvén resonance [Zheng et al, PRL 2005]

• Compare experimental rotation threshold to linear RWM stability predictions
– MARS-F code [Liu et al, PoP 2000]

– Kinetic post-processor to PEST code [Hu et al, PoP 2005]
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Semi-kinetic damping model in MARS-F predicts
stability even below the “low” experimental threshold

• MARS-F assumes Ω>>ω*i,ωD (finite ω*i, ωD are being included [Chu,  Liu, APS 2007])
➔ use ωE rotation

• Sound-wave damping predicts strong β-dependence, overestimates
rotation threshold at high β ➔ inconsistent with the experiment

Exp.
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Semi-kinetic damping model in MARS-F predicts
stability even below the “low” experimental threshold

• MARS-F assumes Ω>>ω*i,ωD (finite ω*i, ωD are being included [Chu,  Liu, APS 2007])
➔ use ωE rotation

• Sound-wave damping predicts strong β-dependence, overestimates
rotation threshold at high β ➔ inconsistent with the experiment

• Semi-kinetic damping underestimates rotation threshold
– Requires additional physics to explain mode onset in DIII-D

Exp.
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• Kinetic post-processor to PEST code takes into account finite ω*i, ωD

• Kinetic theory predicts low rotation threshold/no rotation to be stable
– Requires additional physics to explain mode onset in DIII-D

• Shear Alfvén damping provides stability at high rotation
– Need for stabilization mechanism at intermediate rotation values

Resonance with precession drift of trapped particles
predicts stability at low or no rotation

[Bo Hu et al, Sherwood 2007]
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• Kinetic theory can explain the stability of low rotation, wall stabilized
DIII-D discharges

• A satisfactory picture of the stability threshold at low rotation requires:
– Additional physics to explain the mode onset and beta collapse

(e.g. penetration of residual resonant error fields)
– Resolution of discrepancies between the kinetic models

Both kinetic models predict stability below the rotation
threshold in DIII-D discharges with balanced NBI

stablestableunstable?DIII-D

stable

unstable

unstable

No rotation
(Ω=0)

High rotation
(Ω>>Ωcrit)

Intermediate
rotation
(Ω>Ωcrit)

Low rotation
(Ω<Ωcrit)

unstablestablestablePEST kinetic
postprocessor

stablestablestableMARS-F semi-
kinetic

stableunstableunstableMARS-F
soundwave
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Low rotation, high beta plasmas are also susceptible to
n=1 rotating modes

• Mode is born rotating, but
quickly (in the order of 10-
100ms) locks to the vessel
– Mode is thought to be

a 2/1 (neoclassical)
tearing mode
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Rotation frequency of the n=1 rotating mode is
consistent with a 2/1 tearing mode

• Rotation frequency of n=1 mode matches impurity and ωE rotation in the
vicinity of the q=2 surface
—For ωrot /(2π) ~ 2.2 kHz (ωrotτw~50) wall behaves like an ideal conductor
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Before observing the RWM the discharge has to pass
through a region which is susceptible to tearing

• Onset of 2/1 tearing mode
frequently observed at
rotation values just above
the RWM rotation threshold
– Decrease of NTM beta

threshold with decreasing
rotation has been
observed in sawtoothing
plasmas [Buttery, APS invited
2007]
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Before observing the RWM the discharge has to pass
through a region which is susceptible to tearing

• Onset of 2/1 tearing mode
frequently observed at
rotation values just above
the RWM rotation threshold
– Decrease of NTM beta

threshold with decreasing
rotation has been
observed in sawtoothing
plasmas [Buttery, APS invited
2007]

• Is the non-rotating mode
(“RWM”) the same tearing
mode that grows locked
from the start?
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Once the rotating mode locks it’s structure at the wall is
identical to the structure of the non-rotating mode
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The rotating n=1 mode has similar outboard pitch and
ballooning structure as either mode in the locked phase

• Rotating and non-rotating modes have same 240Deg phase shift
between R+1 and R-1

• Rotating and non-rotating modes have a similar ballooning character
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Growth rates of non-rotating n=1 modes in low-torque
plasmas do not agree with linear RWM theory

[Strait et al. PoP (2004)]

• Beta dependence of γ’s with balanced
NBI differ from γ’s with magnetic braking
– Why does magnetic braking yield γ’s

consistent with ideal MHD RWM
predictions?

*

*
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Summary/Conclusions

• RWM is stabilized despite a low NBI torque and low rotation
– Reduction of error field is critical in obtaining stability at low rotation

• Even with error field correction a non-rotating n=1 mode becomes
unstable when β exceeds the no-wall limit and the rotation drops below a
threshold
– At the threshold diamagnetic frequencies and the difference between

impurity and main ion rotation are of the order of the measured
rotation

• Linear kinetic models can predict stability at and below the low rotation
threshold
– Description of the mode onset would require additional physics
– Kinetic models require benchmarking/resolution of discrepancies
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Summary/Conclusions (cont.)

• Plasmas close to the rotation threshold are susceptible to n=1 tearing
– Perturbation structures at the wall of rotating (“tearing”) and non-

rotating (“RWM”) n=1 modes at high beta and low rotation are similar
– Growth rates of non-rotating modes do not agree with the linear ideal

MHD RWM model

• What is the relation between the ideal MHD RWM and resistive MHD in
plasmas with rotation in the order of the diamagnetic drift frequency?
– Do amplified residual error fields create an NTM seed at low rotation?
– Does a Δ’ unstable island precede the ideal MHD RWM when it’s

stability boundary (including kinetic effects) is approached sufficiently
slowly (in analogy to Brennan et al, PoP 2002)?

– Do we simply observe a lowering of the NTM beta threshold with lower
rotation independent of ideal MHD stability limits?


