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Sustained resistive wall mode (RWM) stabilization with

very low plasma rotation obtained with balanced NBI

* Toroidal rotation of less than 20 krad/s across the entire profile can be
sufficient for RWM stability

— Corresponds to less than 10% of the ion thermal velocity or less than
1% of the Alfvén velocity

» Correction of n=1 intrinsic error field is essential for stability at low rotation
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1. Rotation thresholds in wall-stabilized discharges with good error field
correction and low NBI torque

— Diamagnetic rotations of (measured) carbon impurities and main ions
are of the order of the measured rotation threshold

2. Comparison of observed rotation threshold with linear RWM theory

— Kinetic damping models with and without taking into account the
precession of trapped particles predict stability even below the
measured rotation

3. Relation between RWM onset and tearing mode onset

— Low rotation wall-stabilized plasmas are susceptible to 2/1 tearing
modes

4. Summary/Conclusions
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RWM observed at high § AND low rotation

B ramp-up at low torque Q, ramp-down at high p
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* Various frajectories in Q,-p space lead to instability
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Rotation thresholds in low NBI torque plasmas

in DIII-D and JT-60U are in surprisingly good agreement

* Reduce NBI torque until RWM becomes unstable

JT-60U [M. Takechi et al, PRL 2007] DIII-D [E.J. Strait et al, PoP 2007]
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* Evaluating the magnitude of the rotation threshold at the g=2 surface
results in good agreement
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Rotation threshold too low to neglect diamagnetic

rotation/difference between ion species

« Charge exchange recombination

(CER) speciroscopy measures 100 —rrri0tation threshold
carbon impurity rotation [ 127838 t=aazoms
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rotation/difference between ion species

« Charge exchange recombination
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Rotation threshold too low to neglect diamagnetic

rotation/difference between ion species

« Charge exchange recombination
(CER) spectroscopy measures 100 ———rr .Rlot,atlon threlshold
carbon impurity rotation - ; 127838 1=3325ms |
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Role of rotation components studied by comparing

thresholds in co- and counter-rotating plasmas

Standard Ip: 127838 t=3325ms -
Reversed Ip: 127941 t=3600ms , -4
r ]
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* NBI torque ramp-downs in similar co-rotating (with respect to I,) and
counter-rotating plasmas lead to RWM onsets
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Comparison of profiles in co- and counter-rotating

plasmas indicates importance of w; for RWM stabilization
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Comparison of profiles in co- and counter-rotating

plasmas indicates importance of w; for RWM stabilization
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Comparison of profiles in co- and counter-rotating

plasmas indicates importance of w; for RWM stabilization
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Comparison of profiles in co- and counter-rotating

plasmas indicates importance of w; for RWM stabilization
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* Best agreement in
magnitude of w

— Similar magnitude at all
resonant surfaces

e Caveats:
— Neglect poloidal rotation

— Assumes No symmetry-
breaking mechanism

— Rotation profiles do not
vary for p>0.9
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Slow growth makes RWM susceptible to various

stabilization mechanisms

Soundwaves
— Finite parallel viscosity [Bondeson & Ward, PRL 1994]
Kinetic effects (wave-particle resonances)

— Transit frequency of passing particles 0; ~ Vin/R
[Bondeson & Chu, PoP 1996]

— Bounce frequency of trapped particles w, ~ (r/R)12 v, /R
[Bondeson & Chu, PoP 1996]

— Precession frequency of trapped particles wp ~ (p/ 12 v/R

[Hu & Betti, PRL 2004]
MHD effects

— Shear Alfvén resonance [zheng et al, PRL 2005]

Compare experimental rotation threshold to linear RWM stability predictions
— MARS-F code [Liu et al, PoP 2000]
— Kinetic post-processor to PEST code [Hu et al, PoP 2005]
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Semi-kinetic damping model in MARS-F predicts

stability even below the “low” experimental threshold

e MARS-F assumes Q>>w.;, 0 (finite w., w, are being included [Chu, Liu, APS 2007])

-> use oy rotation

Scaling factor of experimental mg
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e Sound-wave damping predicts strong p-dependence, overestimates
rotation threshold at high p = inconsistent with the experiment
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e Sound-wave damping predicts strong p-dependence, overestimates
rotation threshold at high p = inconsistent with the experiment

» Semi-kinetic damping underestimates rotation threshold
— Requires additional physics to explain mode onset in DIII-D
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Resonance with precession drift of frapped particles

predicts stability at low or no rotation

 Kinetic post-processor to PEST code takes into account finite w.;, oy
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[Bo Hu et al, Sherwood 2007]

Kinetic theory predicts low rotation threshold/no rotation to be stable

— Requires additional physics to explain mode onset in DIII-D
Shear Alfvén damping provides stability at high rotation
— Need for stabilization mechanism at intermediate rotation values
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Both kinetic models predict stability below the rotation

threshold in DIII-D discharges with balanced NBI

pOsIprocessor

No rotation Low rotation Intermediate | High rotation
(on) (Q<chi’r) rotafion (Q>>chi’r)
(Q>chi’r)
DII-D (> unstable stable stable
MARS-F unstable unstable unstable stable
soundwave
MARS-F semi- unstable stable stable stable
kinetic
PEST kinetic stable stable stable unstable

» Kinetic theory can explain the stability of low rotation, wall stabilized
DIlI-D discharges

A satisfactory picture of the stability threshold at low rotation requires:

— Additional physics to explain the mode onset and beta collapse
(e.g. penetration of residual resonant error fields)

— Resolution of discrepancies between the kinetic models
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Low rotation, high beta plasmas are also susceptible to

n=1 rotating modes

126202 126204

* Mode is born rotating, but
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Rotation frequency of the n=1 rotating mode is

consistent with a 2/1 tearing mode

* Rotation frequency of n=1 mode matches impurity and o, rotation in the
vicinity of the g=2 surface

—For w,; /(2n) ~ 2.2 kHz (0T, ~50) wall behaves like an ideal conductor

Cross-power spectrum - toroidal Mirnov 126204 - t=2575ms
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Before observing the RWM the discharge has to pass

through a region which is susceptible to tearing

. 1.3 |
- Onset of 2/1 tearing mode f/‘\ Ev—
frequently observed at e o mode "RWM"
rotation values just above °® ® =1 dLO(tgt“ggsen
the RWM rotation threshold i9 ° . “TEAR”
— Decrease of NTM beta T xe N O Stable
threshold with decreasing ¢ '
rotation has been __&f o 9
observed in sawtoothing = |
plasmas [Buttery, APS invited 1.1 V 5 ‘
2007] o)
o}
o)
~ ideal IPIIHD no-wall n={1 Kink limt
1.0 - ' —
0 1 2 3
é/Qq, 1A @ q=2 (%)
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Before observing the RWM the discharge has to pass

through a region which is susceptible to tearing

« Onset of 2/1 tearing mode 3 f/.\ l‘ e p—
frequently observed at e o mode ‘RWM"
rotation values just above 7 °o® o = dgo(tgtﬂggsen
the RWM rotation threshold ° . “TEAR”

— Decrease of NTM beta E 127 e N O Stable
threshold with decreasing ¢ r
rotation has been oy o 9
observed in sawtoothing E |
plasmas [Buttery, APS invited 1.1 V o :
2007] 5 ©
o]

* Is the non-rotating mode ~ ideal MHD no-wall n=1 kink lim
(“RWM”) the same tearing 1.0 - 1 —
mode that grows locked 0 . 2 o 3
from the start? b Qy A @ q=2 (%)
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Once the rotating mode locks it’s structure at the wall is

identical to the structure of the non-rotating mode

Br sensor Non- rotating n=1 mode "FtWM" o Rotatmg n=1 at onset locks "TEAR"

tor. arrays 20f Magnltude Br (n=1) midplane (G) 126202
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Once the rotating mode locks it’s structure at the wall is

identical to the structure of the non-rotating mode
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Once the rotating mode locks it’s structure at the wall is

identical to the structure of the non-rotating mode

Br sensor
tor. arrays

\R+1

IONAL FUSION FACINTY
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The rotating n=1 mode has similar outboard pitch and

ballooning structure as either mode in the locked phase

Bp (¢p=322Deg. array) - f=2.2kHz - 0.4kHz smoothing

Bp sensor 360
N 270 Phase shift ¢ (Deg.) & FH\
\ R+1 o
\\ R+1 180
\ 90 o
| 0 126204 - 1=2602-2607ms §  [~240 Deg
10 - - ' :
| 8 Magnitude (T/s) E
| ]
/ : ;
4 E
/ R-1 ]
y 2 -]
0 : .
/ 0 90 180 270 360

Poloidal ani;le 0 (Deg.)

Outboard midplane Inboard midplane

e Rotating and non-rotating modes have same 240Deg phase shift
between R+1 and R-1

* Rotating and non-rotating modes have a similar ballooning character
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Growth rates of non-rotating n=1 modes in low-torque

plasmas do not agree with linear RWM theory

Measured Growth Rates « Beta dependence of y’'s with balanced
S T T T NBI differ from y’'s with magnetic braking
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[Strait et al. PoP (2004)]
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Summary/Conclusions

« RWM is stabilized despite a low NBI torque and low rotation
— Reduction of error field is critical in obtaining stability at low rotation

* Even with error field correction a non-rotating n=1 mode becomes
unstable when g exceeds the no-wall limit and the rotation drops below a

threshold

— At the threshold diamagnetic frequencies and the difference between
impurity and main ion rotation are of the order of the measured
rotation

 Linear kinetic models can predict stability at and below the low rotation
threshold

— Description of the mode onset would require additional physics
— Kinetic models require benchmarking/resolution of discrepancies

12th Workshop on MHD Stability Control, Nov 16-18, 2007



Summary/Conclusions (cont.)

* Plasmas close to the rotation threshold are susceptible to n=1 tearing

— Perturbation structures at the wall of rotating (“tearing”) and non-
rotating (“RWM’”) n=1 modes at high beta and low rotation are similar

— Growth rates of non-rotating modes do not agree with the linear ideal
MHD RWM model

 What is the relation between the ideal MHD RWM and resistive MHD in
plasmas with rotation in the order of the diamagnetic drift frequency?

— Do amplified residual error fields create an NTM seed at low rotation?

— Does a A’ unstable island precede the ideal MHD RWM when it's
stability boundary (including kinetic effects) is approached sufficiently
slowly (in analogy to Brennan et al, PoP 2002)¢

— Do we simply observe a lowering of the NTM beta threshold with lower
rotation independent of ideal MHD stability limits?
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