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Major features of the new formulation

e Self-consistency (non-perturbative)  [vs. Hu&Betti’'s approach]

e Kinetic integration in full toroidal geometry [vs. semi-kinetic damping
model in MARS-F]

e Included kinetic effects due to

— particle bounce resonance ! and precession drift resonance 2,
— both transit and trapped particles
— both ions and electrons (where appropriate)
e Consider bulk thermal particle resonances (Maxwellian equ ilibrium distri-

bution), can be extended to include energetic particles

1] F. Porcelli, et al., Phys. Plasmas 1, 470(1994).
2] T.M. Antonsen Jr. and Y.C. Lee, Phys. Fluids 25, 132(1982).
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Single fluid MHD equations with kinetic terms

(Y+inQ)¢ = v+ (£-0Q)ROe (1)
p(y+inQ)v = —0-p+jxB+JIxQ (2)
—p[2QZ x v+ (v-0Q)ROg (3)

—pK) |y [Vin[v- b+ (& 0)Vo-b]b (4)

(Yy+inQ)Q = Ox (vxB)+(Q-OQ)RHe—0Ox (nj) (5)
j = 0OxQ (6)
(y+inQ)p = —v-OP-TPO-v, =0 (7)
D = pI 4+ pﬁinetiC(EL)BB—l- anetiC(El)(l _66) (8)

e Formulate MHD equations in Eulerian frame (for resistive pl asmay), can re-
cast in Lagrangian frame for ideal plasma
e Assumptions made in this formulation:

— Neglected anisotropy of equilibrium pressure

— Kinetic pressure calculated (Antonsen&Porcelli) for ide al plasma without flow, but used here for plasma
with flow, where & couplesto & due to rotation

— Neglected perturbed electrostatic potential, but kept ef fect of equilibrium electrostatic potential
— FLR effect neglected

— Neglected radial excursion of particle trajectory (as Hu& Betti)
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Perturbed kinetic pressure for low and finite mode frequency

Perturbed kinetic pressure is calculated from perturbed pa rticle distribution
function f

pﬁinetice—ithrincp: Z/derzlle (9)
el
anetice—ioat+in(p: Z/drHBle (10)
el
where f! satisfies
d_fl-lz foail_foail—veﬁfL1 (11)

dt ~ ¢ ot Toag
where H?is the perturbed Lagrangian of particle energy

HY(EL, Q) t) = [MVIK - &1 +1(Q)+OB- & )]e '“+? (12)
NB: &, and Q| are unknown (solution) functions.
At high-frequency limit, kinetic pressures become fluid-li ke Kruskal-Oberman
terms, replacing the MHD term  —T'P([J-&).
p"*¢ = —P(0-&, — 28, -K) (13)
pi"e = —P(20-&, +&, k) (14)
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Kinetic pressures are transformed to facilitate code imple mentation

A few steps are undertaken:

1. Decompose solution functions (e.qg. EL,QH) In Fourier harmonics along
poloidal angle

2. Decompose periodic part of coefficients in H'in Fourier series of bounc-
ing orbit

3. Integrate equation (11) from —oo to currenttime {

4. Project perturbed pressure into Fourier space along polo idal angle

We obtain final equations that relate the Fourier harmonics o f solution func-

tions ¢, and Q) to Fourier harmonics of solution function pﬁ'”et'c and p"'neuC
J pkinetic _ i Pe| dAlH G
(Gp k= Z miFAmIGy i Xm (15)
-’-[ 7
J pklnetlc 1 Pel (16)

7
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Kinetic pressures are transformed to facilitate code imple mentation

N 1 Pel
(J Ff|<|ll’le'[IC)k _ = Z /d/\ImIHmIG m|Xm

1 P
kalnetlc . el /d/\lmIHmlem|Xm

e Hmi(P,/\) = 'geometrical factor’ associated with Fourier projection In par-
ticle bounce orbit

o Gymi(W,\) = 'geometrical factor’ associated with Fourier projection along
poloidal angle

o |i(P,\) = integral over particle energy

We can prove that the kinetic pressure yields the same kineti C energy as
Hu&Betti
L1RY; 2
2 Bo X
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Perform analytical integration over particle energy for ge neral geometry

Distinguish three cases:

e Transit resonance of passing particles

. N[, & —3/2)w, — W
= / - 5§/2 wy [N =+ (& — 3/2) W1 + WE] (18)
nwe +o(m+ng+1) %——“}eﬁ—w

e Bounce resonance of trapped particles
W, € — 3/2)W,
|I7£O:Z/ d££5/2 & N + (& — 3/2) w1 + we| —

kE (19)

e + 11/ 220 jyey —

e Precession drift resonance of trapped particles
II O— / df\ A5/2 _gk [w*N+(£k_3/2)w*T+Q)E]
NWE + NWp — IVeff — W
e These integrals eventually iInvolve plasma dispersion func tion

(20)

e At high frequency limit W — oo, I (P,/\) becomes a constant = K-O limit

e Since Hy and Gy, independent of , benchmarking kinetic implementa-
tion at W= Ws = oo, with fluid implementation of K-O terms, checks all the
kinetic integrals except integrals |y, over particle energy
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Choose analytical Soloviev equilibrium as test case

Z [m]

1+K?
PW) = g b FW=1 @1)
kK (RZ? 1 )
W(RZ)= Zquo( + 7 (R =Ry)*— RS) | (22)
B 1/2 ~ RoEaKsINd
plasma boundaryR= Ry(1+ 2e,c080)"“, Z= (1t 26,008)1/2 (23)

test caseRy/a=5k=1qo=1.2 (24)

Solovev EQ:
1.4F

K=1, RO/a:S, q0:1.2
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Benchmark bounce/drift frequency calculations

Compare with large aspect ratio circular plasma approximat lon
10° ‘ ‘ ‘ ‘ — 70
r/R,=0.02 | 6of r/R,=0.02 Lo
/ | sof
40 cylinder
N cylinder 30
Hg g 20t
EQJ,Q §'c 10t
3 -1 Or
10 '+ i
I -0
/8 1 -20
passing % _30 trapped
0 0.2 0.4 A:BOSIE 0.8 ‘1“ “Bo 0.98 0.99 /\:BlOH/E 1.01 102 1.03
cylinder (2ne) "2 trapped particl
Wy, o 49Ry K(k)’ ( PP P )3 (25)
R _ 1/2 : :
Vv 2E/M a ’\ZE’F:;” <, (passing particle
cylinder
W] 20/\ E (k) 5 1 .
= (2s4+1)——<+2s(kf — 1) — - (trapped particle (26)
JVEc/e RiBog K (k) 2|’
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Benchmark bounce/drift frequency calculations
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Performed numerical convergence test of kinetic integrati on

Two important numerical parameters in kinetic integration

e Ny = number of integration points along poloidal angle X

e N = number of integration points along pitch angle AN

5.9 ; ; ‘ ‘ 5.88
5.80F 4 5.879f
N =120
5.88f —o—0—0—0 5.878[ X
5.87f 1 5.877F
5.86} § 5.876F
;; 2 default
L {4 % 58751
585 default
5.84F R 5.874}
5.83} R 5.873}
5.82f . 5.872F
N /\:104
5.81f . 5.871f
58 1 1 1 1 587 1 1 1 1
50 100 150 200 250 50 100 150 200
N N
X A

NB: Singularity is extracted analytically in numerical int egrations
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Benchmark with Kruskal-Oberman limit
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RWM stabilization due to kinetic effects
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e Op = multiplier for the kinetic coefficients:

)

9%

Op = 0 < fluid limit (with T =0),

Op = 1 < full kinetic limit

e For the case considered here, bounce resonance has very weak stabilizing
effect, most stabilization comes from precession drift res onance damping
by ions and electrons

e Not achieved complete stabilization of the mode
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Precession drift resonance of trapped particles
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Three damping regimes with kinetic effects and plasma rotat lon
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Computed growth rates roughly match that from energy princi ple

Without kinetic terms, With kinetic terms,
VT A O, VT A OW,, + OV
YT AW, Y QWL+ AW
e Solid: directly computed by MARS-F and converged after nonli near itera-

tion over eigenvalue!

e Dashed: approximation from energy principle

10"

RWM growth rate (x T;I)
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Observe kinetic modification of RWM eigenmode structure
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Strong kinetic stabilization of RWM for DIII-D plasma

4.5

0 0.01 0.02 0d03 0.04 0.05 0.06
D

e For an equilibrium from  DIII-D shot #125701. Results preliminary (obtained during AP S)!
e Reduction of growth rate by a factor of two after applying onl y 5% of kinetic damping

e Solution does not converge for  0p > 5.4%. seems that eigenfunction changes too much
to follow global mode structure for displacement. Reason sti Il under investigation.
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Conclusion

e \We have developed a full drift kinetic version of MARS-F, wher e kinetic in-
tegrals are evaluated in a general toroidal geometry, and se [f-consistently
incorporated into the MHD formulation

e The new code is tested on a Soloviev analytical equilibrium, It is observed
that most of the kinetic damping comes from the particle prec ession drift
resonances, from particles with nearly vanishing drift fre guency

e The RWM eigenmode structure is modified by kinetic terms

e Kinetic terms may provide strong stabilization for high-pr essure plasmas,
as those from DIII-D

e Future work: more detailed and systematic modeling of DIII-D and ITER
plasmas



