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Major features of the new formulation

• Self-consistency (non-perturbative) [vs. Hu&Betti’s approach]

• Kinetic integration in full toroidal geometry [vs. semi-kinetic damping
model in MARS-F]

• Included kinetic effects due to

– particle bounce resonance 1 and precession drift resonance 2,

– both transit and trapped particles

– both ions and electrons (where appropriate)

• Consider bulk thermal particle resonances (Maxwellian equ ilibrium distri-
bution), can be extended to include energetic particles

[1] F. Porcelli, et al., Phys. Plasmas 1, 470(1994).
[2] T.M. Antonsen Jr. and Y.C. Lee, Phys. Fluids 25, 132(1982).
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Single fluid MHD equations with kinetic terms

(γ+ inΩ)ξ = v+(ξ ·∇Ω)R2∇φ (1)

ρ(γ+ inΩ)v = −∇ ·p+ j×B+J×Q (2)

−ρ
[

2ΩẐ×v+(v ·∇Ω)R2∇φ
]

(3)

−ρκ‖|k‖|vth,i[v · b̂+(ξ ·∇)V0 · b̂]b̂ (4)

(γ+ inΩ)Q = ∇× (v×B)+(Q ·∇Ω)R2∇φ−∇× (ηj) (5)

j = ∇×Q (6)

(γ+ inΩ)p = −v ·∇P−ΓP∇ ·v, Γ = 0! (7)

p = pI+ pkinetic
‖ (ξ⊥)b̂b̂+ pkinetic

⊥ (ξ⊥)(I− b̂b̂) (8)

• Formulate MHD equations in Eulerian frame (for resistive pl asma), can re-
cast in Lagrangian frame for ideal plasma

• Assumptions made in this formulation:

– Neglected anisotropy of equilibrium pressure

– Kinetic pressure calculated (Antonsen&Porcelli) for ide al plasma without flow, but used here for plasma

with flow, where ξ⊥ couples to ξ‖ due to rotation

– Neglected perturbed electrostatic potential, but kept ef fect of equilibrium electrostatic potential

– FLR effect neglected

– Neglected radial excursion of particle trajectory (as Hu& Betti)

Y.Q. Liu and M.S. Chu MHD Workshop 07, Columbia University, New York, November 18-20, 2007 4/20



Perturbed kinetic pressure for low and finite mode frequency

Perturbed kinetic pressure is calculated from perturbed pa rticle distribution
function f 1

L

pkinetic
‖ e−iωt+inφ = ∑

e,i

∫

dΓMv2
‖ f 1

L (9)

pkinetic
⊥ e−iωt+inφ = ∑

e,i

∫

dΓµBf 1
L (10)

where f 1
L satisfies

d f1
L

dt
= f 0

ε
∂H1

∂t
− f 0

Pφ

∂H1

∂φ
−νeff f

1
L (11)

where H1 is the perturbed Lagrangian of particle energy

H1(ξ⊥,Q‖, t) = [Mv2
‖κ ·ξ⊥+µ(Q‖+∇B·ξ⊥)]e−iωt+inφ (12)

NB: ξ⊥ and Q‖ are unknown (solution) functions.
At high-frequency limit, kinetic pressures become fluid-li ke Kruskal-Oberman
terms, replacing the MHD term −ΓP(∇ ·ξ).

pkinetic
‖ = −P(∇ ·ξ⊥−2ξ⊥ ·κ) (13)

pkinetic
⊥ = −P(2∇ ·ξ⊥+ξ⊥ ·κ) (14)
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Kinetic pressures are transformed to facilitate code imple mentation

A few steps are undertaken:

1. Decompose solution functions (e.g. ξ⊥,Q‖) in Fourier harmonics along
poloidal angle

2. Decompose periodic part of coefficients in H1 in Fourier series of bounc-
ing orbit

3. Integrate equation (11) from −∞ to current time t

4. Project perturbed pressure into Fourier space along polo idal angle

We obtain final equations that relate the Fourier harmonics o f solution func-
tions ξ⊥ and Q‖ to Fourier harmonics of solution function pkinetic

‖ and pkinetic
‖ :

(Jpkinetic
‖ )k =

1√
π ∑

e,i
∑
m,l

Pe,i

B0

∫

dΛImlHmlG
‖
kmlXm (15)

(Jpkinetic
⊥ )k =

1√
π ∑

e,i
∑
m,l

Pe,i

B0

∫

dΛImlHmlG
⊥
kmlXm (16)
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Kinetic pressures are transformed to facilitate code imple mentation

(Jpkinetic
‖ )k =

1√
π ∑

e,i
∑
m,l

Pe,i

B0

∫

dΛImlHmlG
‖
kmlXm

(Jpkinetic
⊥ )k =

1√
π ∑

e,i
∑
m,l

Pe,i

B0

∫

dΛImlHmlG
⊥
kmlXm

• Hml(ψ,Λ) = ’geometrical factor’ associated with Fourier projection in par-
ticle bounce orbit

• Gkml(ψ,Λ) = ’geometrical factor’ associated with Fourier projection along
poloidal angle

• Iml(ψ,Λ) = integral over particle energy

We can prove that the kinetic pressure yields the same kineti c energy as
Hu&Betti

δWK =

√
π

2
ν
B0

∑
e,i

∫

dψPe,i

∫

dε̂k∑
l

∑
σ

ε̂5/2
k e−ε̂kλ̂l

∫

dΛτ̂b

∣

∣

∣

〈

e−il ωbt+inφ̃(t)HL

〉∣

∣

∣

2
(17)
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Perform analytical integration over particle energy for ge neral geometry

Distinguish three cases:

• Transit resonance of passing particles

Iml = ∑
σ

∫ ∞

0
dε̂kε̂

5/2
k e−ε̂k

n[ω∗N +(ε̂k−3/2)ω∗T +ωE]−ω

nωE +σ(m+nq+ l)
√

2ε̂kT
M

2π
τ̂b
− iνeff−ω

(18)

• Bounce resonance of trapped particles

Il 6=0 = ∑
σ

∫ ∞

0
dε̂kε̂

5/2
k e−ε̂k

n[ω∗N +(ε̂k−3/2)ω∗T +ωE]−ω

nωE + l
√

2ε̂kT
M

2π
τ̂b
− iνeff−ω

(19)

• Precession drift resonance of trapped particles

Il=0 = ∑
σ

∫ ∞

0
dε̂kε̂

5/2
k e−ε̂k

n[ω∗N +(ε̂k−3/2)ω∗T +ωE]−ω
nωE +nωD− iνeff−ω

(20)

• These integrals eventually involve plasma dispersion func tion

• At high frequency limit ω → ∞, Iml(ψ,Λ) becomes a constant =⇒ K-O limit

• Since Hml and Gml independent of ω, benchmarking kinetic implementa-
tion at ω = ω f = ∞, with fluid implementation of K-O terms, checks all the
kinetic integrals except integrals Iml over particle energy
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Choose analytical Soloviev equilibrium as test case

P(ψ) = −1+κ2

κR3
0q0

ψ, F(ψ) = 1 (21)

ψ(R,Z) =
κ

2R3
0q0

(

R2Z2

κ2
+

1
4
(R2−R2

0)
2−a2R2

0

)

(22)

plasma boundary :R= R0(1+2εacosθ)1/2, Z =
R0εaκsinθ

(1+2εacosθ)1/2
(23)

test case :R0/a = 5,κ = 1,q0 = 1.2 (24)

4 4.5 5 5.5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R [m]

Z
 [m

]

r/R
0
=0.08 

0.02 

0.18 

0 0.2 0.4 0.6 0.8 1
1.2

1.25

1.3

1.35

1.4

s=ψ
p
1/2

q

Solovev EQ:

κ=1, R
0
/a=5, q

0
=1.2

 

Y.Q. Liu and M.S. Chu MHD Workshop 07, Columbia University, New York, November 18-20, 2007 9/20



Benchmark bounce/drift frequency calculations

Compare with large aspect ratio circular plasma approximat ion
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√

2E/M
=







(2Λεr)
1/2

4qR0

π
K(kt)

, (trapped particle)
(1−Λ+Λεr)

1/2

2qR0

π
K(kc)

, (passing particle)
(25)

ωcylinder
d

√

Ec/e
=

2qΛ
R2

0B0εr

[

(2s+1)
E(kt)

K(kt)
+2s(k2

t −1)− 1
2

]

, (trapped particle) (26)
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Benchmark bounce/drift frequency calculations
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Performed numerical convergence test of kinetic integrati on

Two important numerical parameters in kinetic integration :

• Nχ = number of integration points along poloidal angle χ

• NΛ = number of integration points along pitch angle Λ
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NB: Singularity is extracted analytically in numerical int egrations
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Benchmark with Kruskal-Oberman limit
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RWM stabilization due to kinetic effects
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• αD = multiplier for the kinetic coefficients: αD = 0⇔ fluid limit (with Γ = 0),
αD = 1⇔ full kinetic limit

• For the case considered here, bounce resonance has very weak stabilizing
effect, most stabilization comes from precession drift res onance damping
by ions and electrons

• Not achieved complete stabilization of the mode
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Precession drift resonance of trapped particles
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Most drift resonance damping seems come from particles with nearly vanish-
ing magnetic drift frequency.

Y.Q. Liu and M.S. Chu MHD Workshop 07, Columbia University, New York, November 18-20, 2007 15/20



Three damping regimes with kinetic effects and plasma rotat ion
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Computed growth rates roughly match that from energy princi ple

Without kinetic terms,

γτ∗w ≈−δW∞

δWb

With kinetic terms,

γτ∗w ≈−δW∞ +δWk

δWb+δWk

• Solid: directly computed by MARS-F and converged after nonli near itera-
tion over eigenvalue!

• Dashed: approximation from energy principle
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Observe kinetic modification of RWM eigenmode structure
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Strong kinetic stabilization of RWM for DIII-D plasma
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• For an equilibrium from DIII-D shot #125701. Results preliminary (obtained during AP S)!

• Reduction of growth rate by a factor of two after applying onl y 5% of kinetic damping

• Solution does not converge for αD > 5.4%. seems that eigenfunction changes too much

to follow global mode structure for displacement. Reason sti ll under investigation.
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Conclusion

• We have developed a full drift kinetic version of MARS-F, wher e kinetic in-
tegrals are evaluated in a general toroidal geometry, and se lf-consistently
incorporated into the MHD formulation

• The new code is tested on a Soloviev analytical equilibrium. It is observed
that most of the kinetic damping comes from the particle prec ession drift
resonances, from particles with nearly vanishing drift fre quency

• The RWM eigenmode structure is modified by kinetic terms

• Kinetic terms may provide strong stabilization for high-pr essure plasmas,
as those from DIII-D

• Future work: more detailed and systematic modeling of DIII-D and ITER
plasmas
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