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• The high dimensionality of the problem and the strong coupling between
the different variables describing the current profile evolution of the
plasma call for a model-based, multivariable approach to obtain improved
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During “Phase I”  the control goal is to drive the current profile from 
any arbitrary initial condition to a prescribed target profile at some time 
T (T T ) in the flat top phase of the total c rrent I(t) e ol tion The
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T ∈ (T1,T2) in the flat-top phase of the total current I(t) evolution. The 
prescribed target profile is not an equilibrium profile during “Phase I." 
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• Models for Control Design

• Open-loop Optimal Control

• Closed-loop Optimal Control
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Magnetic diffusion equation: )(tI
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Model for Control DesignModel for Control Design
GOAL: Develop a model based controller to be used in
achieving desirable current profiles during the plasma current
GOAL: Develop a model based controller to be used in
achieving desirable current profiles during the plasma currentg p g p
ramp-up. A necessary prior task is the development of a
dynamic model to use for controller design.

g p g p
ramp-up. A necessary prior task is the development of a
dynamic model to use for controller design.

Modeling Alternatives:

•The magnetic diffusion equation is accompanied by transport equations for
the density and the temperature .

• The magnetic diffusion equation is accompanied by simplified, scenario-
oriented, models for the density and temperature.

• The magnetic diffusion equation is evaluated with real-time measurements of
the density and the temperature.
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Model reduction (PDE → ODE) may be necessary. Particularly for closed-
loop control.
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Current Profile Control: Model ValidationCurrent Profile Control: Model Validation
The simplified model has been compared with experiment shot #129412The simplified model has been compared with experiment shot #129412.
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Current Profile Control: Model ValidationCurrent Profile Control: Model Validation
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The initial validating results show qualitative agreement between
simplified model and experiment. More validation experiments will be
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carried out during the 2008 campaign.
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In addition, a value of the total current I(t) is prescribed for 
the flattop phase, i.e.,
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Current Profile Control: OLCurrent Profile Control: OL--ES ControlES Control
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In each iteration of extremum seeking procedure, θ is used to construct the
time evolution of the three physical actuators, , and .
In each iteration of extremum seeking procedure, θ is used to construct the
time evolution of the three physical actuators, , and .( )tn ( )tPtot( )tI
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The vector parameter θ has 10 componentsThe vector parameter θ has 10 components

( ) ( )
( ) ( ) ( ) ( ) ⎪⎬

⎫
⎪
⎨

⎧
= sPsPsPsP

sIsI
2180400

,8.0,4.0
θ

By taking into account that and , and using curve fitting
f th i t t t th fil f
By taking into account that and , and using curve fitting
f th i t t t th fil f

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎪

⎭

⎬
⎪
⎩

⎨=
snsnsnsn

sPsPsPsP tottottottot

2.1,9.0,6.0,3.0
,2.1,8.0,4.0,0θ

( ) 00 IsI = ( ) ettITI arg1 =
( ) ( ) ( ) ( ) ( )for the points , we can reconstruct the profile for

for . In addition, we make for .
for the points , we can reconstruct the profile for
for . In addition, we make for .

( ) ( ) ( ) ( )sIsIsIsI 2.1,8.0,4.0,0
[ ]1,0 Tt∈ ( ) ettItI arg= [ ]21,TTt∈

( )tI

Following similar procedure we can construct the law forFollowing similar procedure we can construct the law for ( )tPFollowing similar procedure, we can construct the law for .

By considering that , and using linear interpolation, we can
define the law for

Following similar procedure, we can construct the law for .

By considering that , and using linear interpolation, we can
define the law for

( )tPtot

( ) 00 nsn =
( )tndefine the law for .

The reconstructed control laws are in turn fed into the PDE model. Given
initial ψ, the PDE system is integrated to obtain , and finally ,

define the law for .

The reconstructed control laws are in turn fed into the PDE model. Given
initial ψ, the PDE system is integrated to obtain , and finally ,( )t,ρ̂ψ

( )tn

( )t,ρ̂ι

LEHIGH
U  N  I  V  E  R  S  I  T  Y

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007 15

ψ, y g , y ,
which are necessary to evaluate the cost function

ψ, y g , y ,
which are necessary to evaluate the cost function
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In this simulation, we consider the time interval [0, 2.4s]. The initial poloidal
flux ψ is shown in Figure (a) and the target ι profile is shown in Figure (b).
The current I(t), average density n(t) and total power Ptot(t) are

t t d i d i ti
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reconstructed as previous description.



Current Profile Control: OLCurrent Profile Control: OL--ES ControlES Control

0.4

0.45
desirable
computed

0.35

0.4

0.3

0.35

0.4

 

0.25

0.3

0.35

st
 fu

nc
tio

n 
J

0.15

0.2

0.25io
ta

 

0.1

0.15

0.2

N
or

m
al

iz
ed

 c
os

t 
0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

radius ρ
0 200 400 600 800 1000

0

0.05

iteration number

The  besting matching for ι profile

radius ρ

Normalized cost function evolution

LEHIGH
U  N  I  V  E  R  S  I  T  Y

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007 17



12
x 10

5

1.3
x 10

7

Current Profile Control: OLCurrent Profile Control: OL--ES ControlES Control

10

11

12

(A
)

1.1

1.2

1.3

( )tPtot( )tI

8

9

 C
ur

re
nt

 I 
(A

)

0.9

1

 P
to

t (
W

)

2.8
x 10

19

0 0.5 1 1.5 2 2.5
6

7

time t(s)
0 0.5 1 1.5 2 2.5

0.7

0.8

time t(s)

2.2

2.4

2.6

ity
 n

 (
m

3 )

( )tn • This is some 
preliminary work 
that does not take 

1.6

1.8

2

A
ve

ra
ge

 d
en

si
ty into account all the 

dynamics of the 
actuators.

LEHIGH
U  N  I  V  E  R  S  I  T  Y

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007 18
0 0.5 1 1.5 2 2.5

1.2

1.4

time t(s)



Current Profile Control: OLCurrent Profile Control: OL--ES ControlES Control
E i t J l  6  2007Experiment July 6, 2007

Conclusions:

-Redefine constraints 
for actuators
- Continue effort on 

d l lid timodel validation
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What is the potential of ES?

Simple implementation for 
complex or unknown 
plantsplants

Integration of CORSICA into 
MATLAB SIMULINK 

CORSICA
MATLAB SIMULINK 
environment

Extremum Seeking
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GOAL: Identical to open-loop control. During “Phase I” an
ti l t l bl t b l d h ti l ti
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ti l t l bl t b l d h ti l ti
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optimal control problem must be solved, where time evolution
for three actuators ( ) are sought to
minimize the functional. Closed-loop control is expected to be
more effective in dealing with model and IC uncertainties and

optimal control problem must be solved, where time evolution
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Closed-loop  control scheme

This figure shows a closed-loop, receding-horizon, optimal controller based on 
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an extremum-seeking optimization framework.
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1. Select the tolerance ε>0 and the maximum number of

iterations for the extremum seeking control algorithm.
2. Define ti=t0. Provide the off-line actuator trajectories u(t), for t >

t =t and the actual initial poloidal flux profile ψ(t ) to the PDE

1. Select the tolerance ε>0 and the maximum number of
iterations for the extremum seeking control algorithm.

2. Define ti=t0. Provide the off-line actuator trajectories u(t), for t >
t =t and the actual initial poloidal flux profile ψ(t ) to the PDEti=t0, and the actual initial poloidal flux profile ψ(t0) to the PDE
model.

3. Compute the predicted ι(T) (control target) from the output
sequence ψ(t) for t > t obtained from the PDE model

ti=t0, and the actual initial poloidal flux profile ψ(t0) to the PDE
model.

3. Compute the predicted ι(T) (control target) from the output
sequence ψ(t) for t > t obtained from the PDE modelsequence ψ(t), for t > ti, obtained from the PDE model.

4. Calculate the cost function. If it is less than ε, go to step 6.
5. Adjust the parameters θ ( or u(t)) of the extremum seeking

algorithm until the cost function is less than or the

sequence ψ(t), for t > ti, obtained from the PDE model.
4. Calculate the cost function. If it is less than ε, go to step 6.
5. Adjust the parameters θ ( or u(t)) of the extremum seeking

algorithm until the cost function is less than or thealgorithm, until the cost function is less than ε or the
maximum number of iteration is reached.

6. Implement the calculated actuator trajectories on the actual
system for [t + Δt t + 2Δt]

algorithm, until the cost function is less than ε or the
maximum number of iteration is reached.

6. Implement the calculated actuator trajectories on the actual
system for [t + Δt t + 2Δt]system for [ti + Δt, ti + 2Δt].

7. Move the control horizon one sampling interval Δt ahead,
measure the output of the actual system ψ(ti + Δt), make ti = ti +
Δt and go to step 3

system for [ti + Δt, ti + 2Δt].
7. Move the control horizon one sampling interval Δt ahead,

measure the output of the actual system ψ(ti + Δt), make ti = ti +
Δt and go to step 3
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Δt, and go to step 3.Δt, and go to step 3.
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In this simulation, we consider the time interval [0, 2.4s]. The initial poloidal
flux ψ is shown in Figure (a) and the target ι profile is shown in Figure (b). The
current I(t), average density n(t) and total power Ptot(t) are reconstructed as

( ) ( )

LEHIGH
U  N  I  V  E  R  S  I  T  Y

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007 25

( ), g y ( ) p tot( )
previous description.



Current Profile Control: CLCurrent Profile Control: CL--ESES--RH ControlRH Control

0.4

0.45
Iota comparison

0.3

0.35

0.4

0.15

0.2

0.25ι

desirable

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15
desirable
open−loop nominal ψ

ini

Computed best matching in open-loop control with nominal initial profile. 

0 0.2 0.4 0.6 0.8 1
0.05

ρ/ρ
b

LEHIGH
U  N  I  V  E  R  S  I  T  Y

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007 26

p g p p p



Current Profile Control: CLCurrent Profile Control: CL--ESES--RH ControlRH Control

10

12

14
x 10

5

 I 
(A

)

1.5

2
x 10

7

W
)

6

8

10

 C
ur

re
nt

 I 
(

0.5

1

 P
to

t (
W

)

Time evolution of I(t) Time evolution of Ptot(t)
0 0.5 1 1.5 2 2.5

4

time t(s)
0 0.5 1 1.5 2 2.5

0

time t(s)

x 10
19

• This is some preliminary work
that does not take into account the

3

4

5

6
x 10

de
ns

ity
 n

 (
m

3 )

dynamics of the actuators.

0 0.5 1 1.5 2 2.5
0

1

2

3

A
ve

ra
ge

 d
e

LEHIGH
U  N  I  V  E  R  S  I  T  Y

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007 27

Time evolution of ( )tn

0 0.5 1 1.5 2 2.5
time t(s)



Current Profile Control: CLCurrent Profile Control: CL--ESES--RH ControlRH Control

−0.32

−0.3
Initial poloidal flux

0.45

0.5
Iota comparison

−0.38

−0.36

−0.34

−0.32

in
i

nominal ψ
ini

disturbed ψ
ini

0.3

0.35

0.4

0.45

ι

−0.44

−0.42

−0.4

−0.38ψ
in

0.15

0.2

0.25

0.3ι

desirable
open−loop disturbed  ψ

(a) (b)

0 0.2 0.4 0.6 0.8 1
−0.46

−0.44

ρ/ρ
b

0 0.2 0.4 0.6 0.8 1
0.1

0.15

ρ/ρ
b

open−loop disturbed  ψ
ini

Figure (a) shows the disturbed initial poloidal flux profile, and compares it with the 
nominal initial poloidal flux profile. Figure (b) shows the difference between the 
obtained ι profile and the desirable ι profile. As expected, the matching is worsen due to 
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p p p g
the disturbance in the initial poloidal flux profile.
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Figure (a) shows the disturbed initial poloidal flux profile. Figure (b) shows the 
difference between the obtained ι profile and the desirable ι profile. The closed-loop 
approach provides a better matching than the open-loop control.
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Limitation: Computational demand
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