

Error field physics studies in NSTX for high-beta plasmas

College W&M **Colorado Sch Mines** Columbia U Comp-X FIU **General Atomics** INI Johns Hopkins U LANL IINI Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

J.E. Menard, PPPL for the NSTX Research Team

12th Workshop on MHD Stability Control Sunday, November 18, 2007 Columbia University, NY

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP**, Garching **IPP AS CR** U Quebec

Detection and correction of small (<0.1%) low-n deviations from axisymmetry can significantly improve plasma performance

DNSTX

 Correction of n=1 PF coil error fields allowed stable operation at low density w/o mode locking

 Subsequently, sustained high-β operation was routinely achieved, however rotation decay during discharge still observed

- Correction of n=1 TF coil error field → extended stable operation with β > β_{no-wall}
 - No error field control during high β_N phase

Effective EF and RWM control relies heavily on robust detection of small (~1G) non-axisymmetric magnetic fields

OD NSTX

- NSTX has powerful low-f mode detection capabilities:
 - -54 sensors, 2 components of B:
 - 30 radial (B_R) and 24 poloidal (B_P)
 - 6 B_R's are ex-vessel saddle coils
 - Toroidal mode-numbers n=1, 2, 3
 - Only n=1 used in real-time thus far
- In FY06 only B_{P-U} used for control – Limited by available run time
- In FY07 several new RWM/EF sensor combinations tested :

 $-B_{P-U} + B_{P-L}$

 $-B_{P-U} + B_{P-L}$ with spatial offset

- All sensors in combination

•
$$B_{P-U}$$
 + B_{P-L} discussed in this talk

VALEN Model of NSTX (Columbia Univ.)

The NSTX low-frequency mode detection system has been instrumental in identifying vacuum error fields

Error field detection & correction timeline:

- 2001 Primary vertical field coil (PF5) identified as n=1 EF source, and was corrected in 2002 → sustained high β
- 2006 Determined force (from OH leads) at top of machine induces TF coil motion 1-2 mm at midplane relative to PF coils
 → n=1 B_R EF at outboard midplane
- 2007 shimmed TF w.r.t. OH to minimize relative motion of OH and TF
 - n=1 EF reduced, but not eliminated
- 2008-2009 will improve connections at OH lead area to reduce forces and EF

n=1 EF from TF coil motion is $\propto I_{OH} \times I_{TF}$, but has additional time lags and non-linearities which complicate correction

VSTX

At high β , EF correction can aid sustainment of high toroidal rotation needed for passive (rotational) stabilization of the RWM

- Use real-time $I_{OH} \times I_{TF},$ incorporate observed time-lag and non-linearity of EF
- Empirically minimize rotation damping near q=2-3 for 100-200ms of reference shot
 - Extrapolate in time, balance m=2 against m=0 (*non-resonant!*) of EF from moving TF
 - Correction coefficients must be altered for different q(p,t), startup, shape, etc.

Algorithm did not work well in 2007 – in part due to more complicated time dependence of TF-EF

2006 - <u>combination</u> of pre-programmed TF-EFC + n=1 feedback (B_{P-U} sensors) was required to maximize rotation and pulse-length

- Feedback alone (not shown) extended pulse amount similar to that achieved with TF-EFC alone
 - Combination was best

- Gain limited by noise and offsets
- Mode "deformation" also observed
 - RFA/RWM would appear in lower array but not upper (or vice-versa)
- "noise" and "deformation" motivate improved mode detection in 2007:
 - Use optimal combination of U & L
 - Maximize sensitivity to RFA/RWM
 - Decrease sensitivity to deformation
 - Also try B_R for EF detection, control
 - Also try mixture of B_R and B_P

• No error field control during high β_{N} phase • TF-EFC

(D) NSTX

Optimized B_P sensor usage improves detection of low-f n=1 mode, enabling improved feedback suppression of RFA and RWMs

Optimal shift increases n=1 signal / baseline by 2-3 \times \rightarrow higher stable feedback gain

Optimal U/L average of B_P signals improves mode-ID sensitivity

VSTX

In 2007, using optimized B_P sensors in control system allowed feedback to provide most/all n=1 error field correction at high β

- Previous n=1 EF correction required a priori estimate of intrinsic EF
- Additional sensors \rightarrow detect modes with RWM helicity \rightarrow increased signal to noise
- Improved detection \rightarrow higher gain \rightarrow EF correction using <u>only feedback on RFA</u>

5

EFC algorithm developed in FY07:

- Use time with minimal intrinsic EF and RWM stabilized by rotation
- Intrinsic Ω_{ϕ} collapse absent in 2007 \rightarrow purposely apply n=1 EF to reduce rotation, destabilize RWM
- Find corrective feedback phase that reduces applied EF currents
- Increase gain until applied EF currents are nearly completely nulled and plasma stability restored
- Then turn off applied error field (!)

G_p=0.0 G_p=0.5 approximate no-wall limit G_p=0.7 RWM/EF coil current (50ms smoothing) 200 amperes 100 0 -100 -200

0.4

Normalized beta

0.6

seconds

 \rightarrow Use same gain/phase settings to suppress RFA from intrinsic EF **and** any unstable RWMs

0.2

1.0

125320 125321 125322

125323

0.8

Optimal phase difference δ =270° between measured U/L avg B_P & applied B_R minimizes mean of each SPA current simultaneously

0 NSTX

• Again, sufficient gain is required:

 $G_P=0.0$ $G_P=0.5$ $G_P=0.7$

NEW: Discovered high-*n* error fields (*n*=3) important at high β_N

- Pulse-length depends on polarity of applied n=3
 - Anti-corrective polarity disrupts I_P and β
- Plasmas operate above n=1
 no-wall limit → RFA

– slows rotation \rightarrow

- destabilizes n=1 RWM
- Correction current magnitude for n=3 similar to that for n=1 correction
 - Applied n=3 $|B_R|$ is \approx 6G at outboard midplane
 - Fortuitous phase match between intrinsic n=3 EF and field coils can apply
- Assessing n=3 EF sources...

• *n* > 1 error fields not commonly addressed in present devices, or in ITER

Outboard Ω_{ϕ} changes by 30-40% with n=3 polarity flip

- Optimal n=3 current magnitude = 300-400A
- Coil shape data indicates VF coil (PF5) produces some n=3 EF
 - Need to assess if PF5 EF is consistent with empirical correction below

Simultaneous multiple-n correction improves performance (Optimized feedback control of n=1 B_P RFA + pre-programmed n=3 correction)

- **D**NSTX
- Record pulse-length at $I_P=900kA$, with sustained high- β
- Long period free of core low-f MHD activity
- Plasma rotation sustained over same period
 - Core rotation decreases with increasing density ($f_{GW} \rightarrow 0.75$), but...
 - R > 1.2m rotation slowly <u>increases</u> until large ELM at t=1.1s

In the n=3 EFC experiments, edge rotation for $\rho > 0.75$ determines stability of discharges and resultant pulse-length

 Discharges in n=3 EFC studies have low rotation at low-order rationals relative to the core rotation

-
$$\Omega_{\phi} \tau_{A} (\rho=0) = 18\%$$

$$\Omega_{\phi} \tau_{A} (q=2) = 4\%$$
 (4.5 × lower)

-
$$\Omega_{\phi} \tau_{A} (q=3) = 0.4-1\%$$
 (18-45 × lower)

n=3 EFC increases the rotation primarily on surfaces with $q \ge 3$ — With n=3 EFC, rotation is sufficient to stabilize n=1 RWM

Without n=3 EFC, rotation is lower and discharge has RWM disruption

n=3 EFC discharges bracket critical rotation profile for n=1 RWM, motivating comparison to MARS-F stability code

(D) NSTX

MARS-F sound-wave damping model under-predicts critical rotation from n=3 experiments by factor of 2-5

Next – test semi-kinetic damping model in MARS-F at low-A

Low-A and strong shaping of NSTX violate high-A/circular formulation of particle trapped and passing orbit times implemented in MARS-F semi-kinetic damping model: Inverse aspect ratio

Dissipation $\propto -\operatorname{Im}(\hat{\Delta}_{C}) \equiv D_{C}(\Omega_{C}, \epsilon_{r}) = \frac{\sqrt{\pi}}{2} \Omega_{C}^{7} \int_{0}^{1/(1+\epsilon_{r})} \tau^{8} \exp(-\tau^{2} \Omega_{C}^{2})(2-\lambda)^{2} d\lambda$ Normalized orbit time

Normalized rotation frequent

$$= \frac{\Omega_{\phi}}{|nq-m'|\omega_s} \longrightarrow \omega_s \equiv \frac{(2T/M)^{1/2}}{qR} \qquad \tau = \hat{K}(k)(\kappa_c/2\epsilon_r)^{1/2} \\ \kappa_c \equiv k^2(1-\epsilon_r) + 2\epsilon_r = k^2/\lambda$$

The high-A model over-predicts the orbit time τ by up to a factor of 2 at large r/a in NSTX → decreased dissipation

But, $\varepsilon_r \equiv a/R_0 \sqrt{\psi_n} \neq \varepsilon_B \equiv (B_{max} - B_{min})/(B_{max} + B_{min})$ $\epsilon_{B} \approx 0.6 \times \epsilon_{R}$ in NSTX core, and ϵ_{B} should be used \rightarrow increased dissipation

General geometry corrections have been *implemented in MARS-F and tested (preliminary)*

General geometry corrections significantly modify the critical rotation frequency, and MARS-F **under-predicts** the experimental values

- Overall, MARS-F (high-A) semi-kinetic damping under-predicts critical rotation – NSTX by 40-75%, DIII-D by 20-40%, JET by 0-20%
 - General geometry effects important, but reduced dissipation needed to explain data

Passing particles dominate dissipation and give rise to local minima in growth rate vs. rotation frequency

• Ion collisionality $v_i^* \rightarrow 1$ for $q \ge 4$ at large r/a in NSTX

- → Collisional decorrelation of wave-particle interaction between RWM and barely-passing low-energy orbits could be strong effect
- Future work: How does decorrelation modify predicted dissipation & Ω_{crit} ?

- Multiple-n (n = 1, 3) EF correction improves sustained high- β_N operation
- General geometry corrections to particle orbit times can significantly modify the RWM critical rotation calculated by MARS-F – up to 50% variation in NSTX
- Present semi-kinetic damping theory generally under-predicts critical rotation → explore mechanisms that might decrease dissipation