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Detection and correction of small (<0.1%) low-n deviations from 
axisymmetry can significantly improve plasma performance 

• No error field control during high βN phase
• TF-EFC
• TF-EFC + active n=1 BP feedback

No-wall limit

Rotating mode 
onset

• Correction of n=1 PF coil error 
fields allowed stable operation 
at low density w/o mode locking

• Correction of n=1 TF coil error field 
extended stable operation with β > βno-wall

2006
2003

• Subsequently, sustained high-β operation 
was routinely achieved, however rotation 
decay during discharge still observed

Before correction
After correction
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Effective EF and RWM control relies heavily on robust 
detection of small (~1G) non-axisymmetric magnetic fields

• NSTX has powerful low-f mode 
detection capabilities:
– 54 sensors, 2 components of B:

• 30 radial (BR) and 24 poloidal (BP)
• 6 BR’s are ex-vessel saddle coils

– Toroidal mode-numbers n=1, 2, 3
• Only n=1 used in real-time thus far

• In FY06 only BP-U used for control
– Limited by available run time

• In FY07 several new RWM/EF 
sensor combinations tested :
– BP-U + BP-L
– BR-U + BR-L
– BP-U + BP-L with spatial offset
– All sensors in combination

• BP-U + BP-L discussed in this talk
VALEN Model of NSTX (Columbia Univ.)

6 ex-vessel midplane control coils

SS Vacuum
Vessel

Copper passive
conductor plates

BR

BP sensor

BR sensor (n=1 locked mode)
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The NSTX low-frequency mode detection system has 
been instrumental in identifying vacuum error fields

• 2001 – Primary vertical field coil (PF5) 
identified as n=1 EF source, and was 
corrected in 2002 sustained high β

• 2006 – Determined force (from OH leads) 
at top of machine induces TF coil motion 
1-2 mm at midplane relative to PF coils

n=1 BR EF at outboard midplane

• 2007 – shimmed TF w.r.t. OH to minimize 
relative motion of OH and TF
– n=1 EF reduced, but not eliminated

• 2008-2009 – will improve connections at 
OH lead area to reduce forces and EF

Error field detection & correction timeline:

BR
sensor

TF coil

PF5 coil

RWM/EF
coil

(Displacement exaggerated 
to show tilting motion)
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n=1 EF from TF coil motion is ∝ IOH x ITF, but has additional 
time lags and non-linearities which complicate correction

EF amplitude changes 
slope with linear IOH
ramp at fixed ITF

FY2006 (pre-shim)
FY2007

EF phase flips more slowly and in 
opposite direction following shimming

TF motion produces 4-6 Gauss peak
n=1 EF at outboard side of vessel

Vacuum
error field

OH zero crossing precedes 
minimum EF by 0.2s

Time [s]

BT=4.5kG
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At high β, EF correction can aid sustainment of high toroidal
rotation needed for passive (rotational) stabilization of the RWM

• Use real-time IOH × ITF, incorporate 
observed time-lag and non-linearity of EF

• Empirically minimize rotation damping near 
q=2-3 for 100-200ms of reference shot

– Extrapolate in time, balance m=2 against 
m=0 (non-resonant!) of EF from moving TF

– Correction coefficients must be altered for 
different q(ρ,t), startup, shape, etc.

No EFC

q=2
(w/o MSE)

With TF-EFC

Algorithm did not work well in 2007 – in part due to more complicated time dependence of TF-EF

approximate
no-wall limit

With TF-EFC
No EFC
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2006 - combination of pre-programmed TF-EFC + n=1 feedback 
(BP-U sensors) was required to maximize rotation and pulse-length

• No error field control during high βN phase
• TF-EFC
• TF-EFC + active n=1 BP-U feedback

No-wall limit

Rotating mode 
onset

• Feedback alone (not shown) 
extended pulse amount similar to 
that achieved with TF-EFC alone

– Combination was best

• Gain limited by noise and offsets
• Mode “deformation” also observed

– RFA/RWM would appear in lower 
array but not upper (or vice-versa)

• “noise” and “deformation” motivate 
improved mode detection in 2007:

– Use optimal combination of U & L
• Maximize sensitivity to RFA/RWM
• Decrease sensitivity to deformation 

– Also try BR for EF detection, control
– Also try mixture of BR and BP

2006 
results
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Optimized BP sensor usage improves detection of low-f n=1 mode, 
enabling improved feedback suppression of RFA and RWMs

• Detected n=1 amplitude is 
highest near 0° phase shift

– Consistent with simple up-down 
average with small offset due to 
mode helicity + sensor separation

• But, n > 1 components are also 
detected for “pure” n=1 mode

– mode finite amplitude effects
– eddy currents
– conducting wall non-axisymmetry
– sensor/detection imperfections

• Improved discrimination between 
n=1 and n > 1 obtained with 
different U-L phase shift range

– 150-160° is found to be optimal
– Wider range of n=1 discrimination 

360°

Relative phase shift between upper and lower BP sensors [Degrees]

Optimal shift increases n=1 signal / baseline by 2-3 × higher stable feedback gain

Te
sl

a

Scan phase shift between BP-U and BP-L:
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Optimal U/L average of BP signals improves mode-ID sensitivity

Peak / baseline
= 5 

Peak / baseline
= 8-10 

Peak / baseline = 10-15 

Optimal upper-lower average 
increases amplitude / baseline 
factor of 2-3 higher feedback 
gain possible
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In 2007, using optimized BP sensors in control system allowed 
feedback to provide most/all n=1 error field correction at high β

• Previous n=1 EF correction required a priori estimate of intrinsic EF
• Additional sensors detect modes with RWM helicity increased signal to noise
• Improved detection higher gain EF correction using only feedback on RFA

EFC algorithm developed in FY07:
• Use time with minimal intrinsic EF

and RWM stabilized by rotation
• Intrinsic Ωφ collapse absent in 2007

purposely apply n=1 EF to 
reduce rotation, destabilize RWM

• Find corrective feedback phase that 
reduces applied EF currents

• Increase gain until applied EF 
currents are nearly completely 
nulled and plasma stability restored

• Then turn off applied error field (!)

GP=0.0
GP=0.5
GP=0.7

approximate
no-wall limit

Use same gain/phase settings to suppress RFA from intrinsic EF and any unstable RWMs
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Optimal phase difference δ=270° between measured U/L avg BP
& applied BR minimizes mean of each SPA current simultaneously

• Again, sufficient gain is required: GP=0.0   GP=0.5   GP=0.7
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NEW: Discovered high-n error fields (n=3) important at high βN

• Pulse-length depends on 
polarity of applied n=3

– Anti-corrective polarity 
disrupts  IP and β

• Plasmas operate above n=1 
no-wall limit RFA

– slows rotation 
– destabilizes n=1 RWM

• Correction current 
magnitude for n=3 similar to 
that for n=1 correction

– Applied n=3 |BR| is ≈ 6G at 
outboard midplane

– Fortuitous phase match 
between intrinsic n=3 EF 
and field coils can apply

• Assessing n=3 EF sources...
• n > 1 error fields not commonly addressed in present devices, or in ITER 

+300A
0A

-300A
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Outboard Ωφ changes by 30-40% with n=3 polarity flip

• Optimal n=3 current magnitude = 300-400A
• Coil shape data indicates VF coil (PF5) produces some n=3 EF

– Need to assess if PF5 EF is consistent with empirical correction below
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Simultaneous multiple-n correction improves performance 
(Optimized feedback control of n=1 BP RFA + pre-programmed n=3 correction)

• Record pulse-length at IP=900kA, with sustained high-β
• Long period free of core low-f MHD activity
• Plasma rotation sustained over same period

– Core rotation decreases with increasing density  (fGW 0.75), but…
– R > 1.2m rotation slowly increases until large ELM at t=1.1s

0.65s 

βN = 5-5.5
βT = 18-20%

for 2τCR, 15τE

0.7s 

For reference:  τCR ≈ 0.3s, τE=40-50ms
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In the n=3 EFC experiments, edge rotation for ρ > 0.75 
determines stability of discharges and resultant pulse-length 

• Discharges in n=3 EFC studies have 
low rotation at low-order rationals
relative to the core rotation

– ΩφτA (ρ=0) = 18%
– ΩφτA (q=2) = 4% (4.5 × lower)
– ΩφτA (q=3) = 0.4-1%    (18-45 × lower)

• n=3 EFC increases the rotation 
primarily on surfaces with q ≥ 3 

With n=3 EFC, rotation is sufficient to 
stabilize n=1 RWM

Without n=3 EFC, rotation is lower 
and discharge has RWM disruption

124427 575ms

q=2

q=3

124428 580ms
124427 580ms
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n=3 EFC discharges bracket critical rotation profile for n=1
RWM, motivating comparison to MARS-F stability code

MARS-F sound-wave damping model under-predicts 
critical rotation from n=3 experiments by factor of 2-5
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Next – test semi-kinetic damping model in MARS-F at low-A

• Low-A and strong shaping of NSTX violate high-A/circular 
formulation of particle trapped and passing orbit times implemented 
in MARS-F semi-kinetic damping model:

Normalized orbit timeNormalized rotation frequency

The high-A model over-predicts the orbit time 
τ by up to a factor of 2 at large r/a in NSTX

decreased dissipation

But, εr ≡ a/R0 √ψn ≠ εB ≡ (Bmax-Bmin)/(Bmax+Bmin)
εB ≈ 0.6 × εR in NSTX core, and εB should be used

increased dissipation

Dissipation ∝

General geometry corrections have been 
implemented in MARS-F and tested (preliminary)

Inverse aspect ratio

NSTX general geometry

High-A model
in MARS-F

√ψn = 0.870
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General geometry corrections significantly modify the critical rotation 
frequency, and MARS-F under-predicts the experimental values

• General geometry corrections 
increase predicted RWM Ωcrit
(low Ωφ root) by 35%

– However, critical rotation of lowest 
rotation root is only 16% of 
experimental value

• However, other similar roots w/ 
more internal eigenfunctions
dominate at higher rotation and 
increase critical rotation to 25-40% 
of experimental value

– Roots have low ωr like RWM
– Stabilized by high rotation 

complicated spectrum

• Overall, MARS-F (high-A) semi-kinetic damping under-predicts critical rotation
– NSTX by 40-75%,  DIII-D by 20-40%, JET by 0-20%
– General geometry effects important, but reduced dissipation needed to explain data

High-A/circular orbit model
General-geometry orbit model

Ωφ / Ωφ (experiment)

γτwall
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Passing particles dominate dissipation and give rise to 
local minima in growth rate vs. rotation frequency

• Ion collisionality νi* 1 for q ≥ 4 at large r/a in NSTX 
Collisional decorrelation of wave-particle interaction between RWM and 
barely-passing low-energy orbits could be strong effect 

• Future work:  How does decorrelation modify predicted dissipation & Ωcrit ?

Ωφ / Ωφ (experiment)

Trapped only
Passing only
Both included

General geometry orbit model
Experimental η profile included

γτwall



20NSTX APS-DPP 2007 - Menard

NSTX experiments have improved the understanding
of magnetic error fields and their correction at low and high β

• Multiple-n (n = 1, 3) EF correction improves sustained high-βN operation

• General geometry corrections to particle orbit times can significantly 
modify the RWM critical rotation calculated by MARS-F – up to 50% 
variation in NSTX

• Present semi-kinetic damping theory generally under-predicts critical 
rotation  explore mechanisms that might decrease dissipation
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