Error Field Physics Studies in DIII-D

by

M.J. Schaffer,¹

with

R.J. La Haye,¹ E.J. Strait,¹ J-K. Park,² J.E. Menard,² A.H. Boozer³

¹General Atomics ²PPPL, Princeton, NJ ³Columbia University, New York, NY

Presented at the 12th Workshop on MHD Stability Control: Improved MHD Control Configurations Columbia University, New York, NY 2007 November 18–20

DIII-D Magnet Coils

Motivation & Key Points

- Error $\delta B \rightarrow$ makes weakly non-axisymmetric stable equilibrium
 - \rightarrow brakes plasma rotation \rightarrow weakens screening currents
 - $\rightarrow \delta B$ penetration/island opens \rightarrow nested magnetic surfaces lost
 - Compounded by plasma amplification of $\delta \textbf{B}$
- RESONANT error at q = 2 in DIII–D left-handed ("normal") plasmas is very small ... δB_{2/1} ≈ 0.5 x 10⁻⁴, but it still needs error correction!
- Additional error search at DIII–D \rightarrow no unknown n=1 errors to blame
 - Must confront n = 1 error correction paradoxes!
- Ideal Perturbed Equilibrium Code (IPEC) resolves many DIII–D and NSTX error correction paradoxes [Jong-kyu Park et al, PRL, 2007 Nov 9]
 - Plasma response is large, dominated by driven ideal external kink
 - Internal δB is mainly from external error coupling to this mode
 - Not amplification of external vacuum field

OUTLINE

- DIII–D ERROR STATUS
 - One TF coil feed modified in 2005–6 \rightarrow reduced error
 - Results after reduced TF coil error
 - Error Search: Found other errors associated with TF coil

• **EMPIRICAL ERROR CORRECTION**

- New method
- Local correction at a local error
- Correcting error of right-handed plasmas

COMPARISON WITH IDEAL MHD PERTURBED EQUILIBRIUM MODEL

- Experimental evidence
- Some properties of ideal perturbed equilibrium
- Model results from IPEC
- SUMMARY & CONCLUSIONS

ERROR STATUS

TF coil current feed modified for lower error in 2006, reduced effective error. I-coil better than C-coil.

RESULTS OF BEST <u>EMPIRICAL</u> CORRECTIONS in 2006

TF-coil	Density at Lock Onset (10 ¹⁹ m ⁻³)		
Feed Status	Uncorrected DIII–D Error	With C-coil Correction	With I-coil* Correction
≤ 2005	1.2	0.8	never tested
2006	0.85	0.60	0.36

*So far, I-coil was tested only for 240° phasing between top & bottom sections

- Removing this error from DIII–D yields better locked mode avoidance
 - ... as expected
- Optimized C-coil still gives additional improvement after the change
 - But, C-coil still overcorrects known errors
- Optimized I-coil error correction (never tested before) is best
 - Empirical I-coil field reduces known error ... no puzzle

Poloidal harmonics of DIII–D n=1 vacuum field errors reduced from ≤ 2005 to ≥ 2006

n = 1 error field ≤ 2005 , Br

- $\delta B_{r(-2/1)} = 1.19 \times 10^{-4}$ at q=2
- δB_r field is "chiral" (left and right handed harmonics not equal)

n = 1 error field ≥ 2006 , Br

- $\delta B_{r(-2/1)} = 0.48 \times 10^{-4}$ at q=2
- Pitch resonance is in an error valley, especially at q = 2, 3
- δB_r is now weaker at $|m| \ge 2$

Empirical correction by I-coil in ≥ 2006 dramatically reduces the vacuum field errors

 δB_r is reduced everywhere by I-coil, except m = -1 at q = 1

I-coil applied correction n = 1 field, Br

- $\delta B_{r(-2/1)} = 0.70 \times 10^{-4} \text{ at } q=2$
- δB_{r(-2/1)} resonant I-coil field is 180° from its -2/1 error counterpart
- I-coil spectrum peaks at m ~ 2 nq
- I-coil had 240° top-bottom current phase difference, a choice based on reduced plasma rotation braking in beam-driven H-mode plasmas [A. Garofalo]

ERROR SEARCH

New measurements show one significant Ferromagnetic source associated with TF coil

- Must know all significant machine errors to test theory predictions
- There is ~130° toroidally outside of TF coil midplane where almost no reliable data could be taken,
 - and saw an unexplainable "large" vertical B error there.
 - Took good data densely in the one accessible region
 - Anomaly source identified as ferromagnetic steel supports intercepting flux from high current TF-coil feed where they passed close to each other
 - The ferromagnetic steel reduced far field of current feed
- After including ferromagnetic steel effect, measured midplane TF coil error could be interpreted plausibly

Measurements revealed TF coil δB from wider-than-specified inter-bundle gaps

• Three δB_{ϕ} peaks are close to:

- wider TF coil inter-bundle gaps at 15°, 90°, 270 °

-Gap excesses \approx 4, 6, 6 mm

- Narrow peaks; resolve n = 1–4
 - $B_{n=1} \sim 1.3 \times 10^{-4} \text{ at } R_o = 1.7 \text{ m}$ $B_{n=2} \sim 1.5 \times 10^{-4} \text{ at } "$ "
- B_{n=1} is much smaller than ~ 5x10⁻⁴ "unknown error" implied by large C-coil empirical correction field
- Effects of higher-n errors not yet known

EMPIRICAL ERROR CORRECTION

Same Low-Density Locked-Mode Technique Used in New (>2005) and Old (<2005) Experiments

- Ohmic, low-density plasma is a "standard candle" to evaluate tokamak error status.
 - Sensitive to locked mode instability.
 - Effective ERROR ~ DENSITY at lock onset.
 - Verified in several tokamaks.
- Upper null avoids Ohmic H-mode in shots with downward ion ∇B drift.

Density Rampdowns to Find Lock

<u>Test Plasma</u>

New Empirical Correction Search Strategy Was Developed in 2006

- Years of experience show that in DIII-D:
 - An n=1 correction field combines with an n=1 <u>effective</u> error field like vectors
 - Mode locking occurs when vector sum reaches a determined magnitude
 - I.e., n=1 behaves like a rigid "mode"
- Correction coil <u>current ramp-ups</u> to locking at 3 different toroidal phases at a <u>fixed density</u> are sufficient to <u>calculate</u> an n=1 effective erro

- In practice we ramp current at 4 different phases for redundancy
- Finally, a <u>density ramp-down</u> shot is taken with the newly found correction, to quantify the locking density, hence the residual effective error
- Used in 2006 & 07
- The one test of "goodness of minimum lock density" indicates that further refinement is possible ... the n=1 "mode" may not be perfectly rigid

Exploratory experiment that actively reduced 30° feed bus error postponed locked mode

- TF coil feed bus error at machine 30° was partially corrected by nearest I-coil, IL30
 - Not a pure test; IL30 was correcting mixed local bus multi-n error and PF coil n=1 offset
- For future, plan to combine corrections of feed and PF coil errors

New correction of RIGHT-HANDED plasmas was developed with 180° top-bottom phase difference

Intrinsic error field, RT-handed test plasma, Br

- Intrinsic n=1 error spectral peak in right-handed plasma is resonant, ≈1.5x10⁻⁴ at q = 2, 3, 4
 - Unlike left-handed plasmas, where resonant n=1 harmonics are < 0.5x10⁻⁴

PREDICTED corrected field using I-coil @A180°

- Prior calculations showed that I-coil with 180° top-bottom difference gave "eyeball best" low resonant harmonics
 - Didn't know how to weight
 - 1.22 kA n=1 current

Empirical Correction of RIGHT-HANDED plasmas optimized quite differently than predicted

EMPIRICAL corrected field using I-coil @ Δ 180°

 Empirical correction reduced spectrum at higher than resonant q

EMPIRICAL I-coil @A180° correction field alone

 Although empirical I-coil field was aligned with q, plasma "wanted" only 0.77 kA peak, vs. 1.22 "predicted"

- Gave little gain in locked mode avoidance
 - Subsequently, perturbed equilibrium model suggests applying correction to its dominant mode, whose spectral peak has m > nq (see later)
 - Will try I-coil top-bot difference = 120°, better coupling to dominant mode

COMPARISON WITH IDEAL MHD PERTURBED EQUILIBRIUM THEORY

Many data contradict the model of vacuum error field negligibly affected by plasma

Using calculated n=1 vacuum error field in DIII–D:

- Resonant intrinsic error (left handed) is already small ~ 0.5x10⁻⁴
- Optimum C-coil overcorrects resonant errors by 2~3 times, yet significantly reduces locking, in both left- and right-handed plasmas
- All my designed resonant correction fields made mode locking worse
- The commonality among all optimum empirical corrections I've analyzed

 I-coil, C-coil, I+C-coils,
 "N=1"coil + C-coil, dynamic error feedback,
 left- and right-handed plasmas,
 before & after 2005 error change
 - is reduced $m \sim 2 q$ (i.e., higher "effective |m|")*, not resonant harmonics
- VACUUM MODEL FAILS. PLASMA RESPONSE MUST BE IMPORTANT

*(m and q have signs here)

IPEC calculations:Small/Large TOTAL resonant δBassociate withGood/Bad locking avoidance

total b = δB including plasma response

- M = machine intrinsic error
- M+C = error + C-coil empirical correction

M+small 21 = error + <u>designed</u> for small vacuum 2/1

Low locking density means better lock avoidance

- Naïvely <u>designed</u> correction fields achieved small vacuum $\delta B \cdot n$, but they drove the plasma kink very strongly
- Machine vacuum error $\delta B \cdot n$ are small, TOTAL $\delta B \cdot n \sim 5$ times larger
- TOTAL δB · n of Machine + C-coil correction ≤ TOTAL Machine error
- TOTAL
 ⁸ · n of Machine + I-coil correction << TOTAL Machine error
- Locking density is monotonic with TOTAL δB · n for varied cases
 - Successful Agreement!

Jong-kyu Park et al, PRL, 2007 Nov 9

The Ideal MHD n=1 External Kink generates large poloidal harmonics inside plasma

Ideal n=1 ext. kink has characteristic geometry on outboard side. Mode phase NOT resonant with B lines.

Figure of RWM kink courtesy of M. Okabayashi and J. Manickam

døtoroidal

dotoroidal

 I-coil with 240° top-bottom difference matches kink phase well, and it avoids locking better, too!

External δB couple most strongly to 2/1 resonance at q = 2 through EDGE vacuum harmonics 7, 8, 9

Sign of m was inverted in this figure in order to decrease and/or increase reader confusion.

a) Higher-m edge harmonics 7,8,9 couple most strongly to m/n = 2/1 resonance at q=2

- b) On boundary, empirical corrections M+I and M+C reduce external $\delta B_{m/1}$ from machine M levels, for 6 ≤ m ≤ 10
 - M+C increases low-|m| boundary harmonics
 - Does it give enough nonresonant braking to explain why C-coil is less effective than I-coil at locked mode avoidance?

Jong-kyu Park et al, PRL, 2007 Nov 9

[•] δ**B**_{2/1} | q=2 ~ Δ_{2/1}

The Ideal Perturbed Plasma Equilibrium Model fits many features of DIII–D error correction experience

- m ~ 2q is very suggestive of ideal MHD n=1 external kink
 - Stable in most tokamak plasmas, but not by much
- Ideal Perturbed Equilibrium Code IPEC calculations* of plasma responses to external error and correction fields show:
 - Small external perturbation drives large internal plasma change Makes large helical currents on low-rational surfaces*

(a new result; <u>large</u>, cannot ignore)

(corrections <u>designed</u> to null resonant <u>vacuum</u> errors <u>WILL</u> fail)

- Dominant equilibrium mode is insensitive to perturbation geometry* (a new result; response rigidity)
 - Combined error + perturbation responds almost like a single mode (seen in locked mode experiments everywhere)
 - Response depends on coupling of external field to kink mode (Consistent with I-coil coupling well, C-coil poorly)
- Non-resonant m ~ 2q_{EDGE} perturbations couple best to ext. kink mode (consistent with DIII-D empirical corrections)

*Jong-kyu Park et al, PRL (2007 Nov 9)

SUMMARY

- DIII–D magnetic errors are well characterized
- TF coil bus modification reduced DIII-D error
- I-coil correction was developed better than C-coil
- Demonstrated local correction at a local error
- Correction of a right handed plasma by I-coil @ △=180° was not very effective
 - Consistent with Ideal MHD Perturbed Equilibrium theory
- Common feature of all good correction in DIII–D is reduced error in m ~ 2q part of n = 1, Br poloidal harmonic spectrum
- Comparison of DIII-D data with Ideal MHD Perturbed Equilibrium theory computed by IPEC code yields good qualitative and semiquantitative agreement
 - In my opinion, this is paradigm-changing progress

