ROBUST CONTROL OF RESISTIVE WALL MODES IN TOKAMAK PLASMAS

J. Dalessio, E. Schuster

Laboratory for Control of Complex Physical Systems

Mechanical Engineering and Mechanics

Workshop on Improved MHD Control Configurations
Columbia University, November 18-20, 2007

\[K(s) \]
Collaborators involved in this project:

• **Mike Walker, Dave Humphreys**
 General Atomics, San Diego, CA

• **Yongkyoon In, Jin-Soo Kim**
 FAR-TECH Inc., San Diego, CA
Introduction

• Resistive Wall Mode (RWM) is a plasma kink instability whose growth rate is moderated by the influence of a resistive wall.

• FAR-TECH DIII-D/RWM model

• Plasma surface modeled as a toroidal current sheet and the wall modeled with an eigenmode approach.

• State-space model of the plant, whose states are the surrounding wall current and the external control coil currents.
Introduction

- 22 poloidal field probes and saddle loops.
- 12 in-vessel coils are used to oppose the deformation.
- State space model is parameterized with a scalar coupling coefficient c_{pp}, which is directly related to the growth rate γ.

![Relationship between Growth Rate γ and c_{pp}](image)

- 12 input, 22 output reduced to 3 input, 2 output using a typical quartet configuration for the I-coils and matched filter on the field probes.
The state matrices are given below, where each matrix has a physical correlation to a parameter in DIII-D which is well known, except for the uncertain parameter c_{pp}.

\[\dot{x} = Ax + Bu \]
\[A = \left(M_{ss} - M_{sp} c_{pp} M_{ps} \right)^{-1} R_{ss} \]
\[B = \left(M_{ss} - M_{sp} c_{pp} M_{ps} \right)^{-1} \]
\[y = Cx \]
\[C = C_{ss} - C_{yp} c_{pp} M_{ps} \]

The transfer function representation of the state matrices

\[\frac{Y(s)}{U(s)} = G(s) = D + C(sI - A)^{-1} B = G(s, c_{pp}) \]

How does the dynamic response change as c_{pp} changes?
We are interested in designing one controller that stabilizes all the systems → ROBUST CONTROL
Design Goal

- To design a model-based controller that stabilizes the system and meets performance criteria over a large range of growth rate values.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Target Value</th>
<th>Maximum Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>1.0 ms</td>
<td>5.0 ms</td>
</tr>
<tr>
<td>Settling Time</td>
<td>5.0 ms</td>
<td>10 ms</td>
</tr>
<tr>
<td>Overshoot</td>
<td>15 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>N/A</td>
<td>± 100 V</td>
</tr>
</tbody>
</table>

- Physical growth rate \((\gamma)\) range: 10-5,000 rad/sec
- Corresponding \(c_{pp}\) range: 0.3325-71
- The growth rate relationship through \(c_{pp}\) is treated as an uncertain parameter that acts as a disturbance to a nominal system.
- Robust control tools are applied to the model to stabilize the system over the design range.
- Results in a single controller that ensures stability and performance within the desired growth rate range.
Controller Design

The goal is to design a feedback controller K that robustly stabilize the system for the applicable range of Δ. Defining

$$N = F_l(P, K) \quad \mu(N_{11}) = \frac{1}{\min \{k_m | \det(I - k_m N_{11} \Delta) = 0\}}$$

where μ is the structured singular value and the term N_{11} isolates the uncertainty from the input and output of the system.

Assuming N and Δ are stable robust, stability is given by

$$\mu(N_{11}(j\omega)) < 1, \forall \omega$$

and robust performance is given by

$$\mu(N(j\omega)) < 1, \forall \omega$$
System Space Model

The state matrices are given below, where each matrix has a physical correlation to a parameter in DIII-D which is well known, except for the uncertain parameter c_{pp}.

$$\dot{x} = Ax + Bu$$

$$A = \left(M_{ss} - M_{sp} c_{pp} M_{ps} \right)^{-1} R_{ss}$$

$$B = \left(M_{ss} - M_{sp} c_{pp} M_{ps} \right)^{-1}$$

Using the Sherman-Morrison formula

$$\left(A_T - b_T C_T D_T \right)^{-1} = A_T^{-1} + \frac{b_T \left(A_T^{-1} C_T \right) \left(D_T A_T^{-1} \right)}{1 - b_T D_T A_T^{-1} C_T}$$

The state matrices can be rewritten as

$$A = A_0 + \sum_{i=1}^{4} \alpha_i A_i$$

$$B = B_0 + \sum_{i=1}^{4} \alpha_i B_i$$

$$C = C_0 + \alpha_5 C_5$$

where each α term is a nonlinear function of the uncertain parameter c_{pp} and every other term is constant.
Linear Fractional Transformation

Using the linear fractional transformation, which is defined by the upper and lower transform for a matrix M as:

$$F_u(M, \Delta_u) = M_{22} + M_{21} \Delta_u (I - M_{11} \Delta_u)^{-1} \ M_{12}$$

The transfer function representation of the state matrices

$$G(s) = D + C(sI - A)^{-1} B$$

can be written as

$$G(s) = F_u\left(M_\alpha, \frac{1}{s}I\right) = M_{a22} + M_{a21} \frac{1}{s} (I - M_{a11} \frac{1}{s})^{-1} \ M_{a12} = M_{a22} + M_{a21} (sI - M_{a11})^{-1} M_{a12}$$

where

$$M_\alpha = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A_0 + \sum_{i=1}^{4} \alpha_i A_i & B_0 + \sum_{i=1}^{4} \alpha_i B_i \\ C_0 + \alpha_5 C_5 & 0 \end{bmatrix}$$
Model Progression
Singular Value Decomposition

The uncertainty α can be formulated into a linear fractional transform by achieving the smallest possible repeated blocks.

$$J_i = \begin{bmatrix} A_i & B_i \\ C_i & D_i \end{bmatrix} = U_i \Sigma_i V_i^* = (U_i \sqrt{\Sigma_i}) (\sqrt{\Sigma_i} V_i^*) = \begin{bmatrix} L_i & R_i \\ W_i & Z_i \end{bmatrix}$$

Denoting q_i as the rank of each matrix J_i, introducing the uncertainty

$$\alpha_i J_i = \begin{bmatrix} L_i \\ W_i \end{bmatrix} [\alpha_i I_{q_i} \begin{bmatrix} R_i \\ Z_i \end{bmatrix}]$$

$$M_{\alpha} = M_{11} + M_{12} \alpha_p M_{21} = F_l(M, \alpha_p)$$

$$M_{11} = \begin{bmatrix} A_0 & B_0 \\ C_0 & 0 \end{bmatrix}$$

$$M_{12} = \begin{bmatrix} L_1 & \cdots & L_5 \\ W_1 & \cdots & W_5 \end{bmatrix}$$

$$M_{21} = \begin{bmatrix} R_1^* & Z_1^* \\ \vdots & \vdots \\ R_5^* & Z_5^* \end{bmatrix}$$

$$\alpha_p = \begin{bmatrix} \alpha_1 I_{q_1} & 0 \\ \vdots & \vdots \\ 0 & \alpha_5 I_{q_5} \end{bmatrix}$$

$$G(s) = F_u \left(M_{\alpha}, \frac{1}{s} \right) = F_u \left(F_l(M_{\alpha}, \alpha_p), \frac{1}{s} \right)$$
The uncertainty α_p is still a nonlinear matrix based on the uncertain parameter c_{pp}. This parameter is extracted using by “pulling out the δ”, where δ is the normalized c_{pp}.

The final result is a linear fractional transform

$$\alpha_1 = \frac{d + \delta e}{1 - a(d + \delta e)}$$

$$Q_1 = \begin{bmatrix} d & e \left(1 + \frac{ad}{1 - ad}\right) \\ 1 - ad & 1 - ad \\ 1 - ad & ae \\ 1 - ad & 1 - ad \end{bmatrix}$$

$$\alpha_1 = F_l(Q_1, \delta)$$

$$\Delta = \delta I \quad |\delta| \leq 1$$
Model Progression
Pulling out the “δ”

Finally this can be substituted into the plant and simplified using several properties of the linear fractional transform

$$G(s) = F_u \left(M_\alpha, \frac{1}{s} I \right) = F_u \left(F_l \left(M_\alpha, \alpha_p \right), \frac{1}{s} I \right) = F_u \left(F_l \left(M_\alpha, F_l(Q, \Delta) \right), \frac{1}{s} I \right)$$

$$G(s) = F_u \left(F_l \left(R, \Delta \right), \frac{1}{s} I \right) = F_l \left(F_u \left(R, \frac{1}{s} I \right), \Delta \right) = F_l \left(P', \Delta \right) = F_u \left(P, \Delta \right)$$

where

$$R = \begin{bmatrix} M_{11} + M_{12}Q_{11}M_{21} & M_{12}Q_{12} \\ Q_{21}M_{21} & Q_{22} \end{bmatrix} \quad P' = F_u \left(R, \frac{1}{s} I \right) = \begin{bmatrix} P'_{11} & P'_{12} \\ P'_{21} & P'_{22} \end{bmatrix}$$
Model Progression

\[\frac{1}{s} I \]

\[M_\alpha \]

\[\alpha_p \]

\[\frac{1}{s} \]

\[M \]

\[Q \]

\[\Delta \]

\[\frac{1}{s} I \]

\[P' \]

\[P \]

\[\Delta \]

\[\Delta \]

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007
D-K Iteration

- No direct method to synthesize a \(\mu \)-optimal controller.

- DK-iteration combines \(H_\infty \) synthesis and \(\mu \)-analysis.

- This method starts with the upper bound on \(\mu \) in terms of the scaled singular value

\[
\mu(N) \leq \min_{D \in \Phi} \sigma(DND^{-1})
\]

where \(\Phi \) is the set of matrices \(D \) which commute with \(\Delta \), i.e., \(D\Delta = \Delta D \).

- Then, the controller that minimizes the peak value over frequency of this upper bound is found, namely

\[
\min_K \left(\min_{D \in \Phi} ||DN(K)D^{-1}||_\infty \right)
\]
The controller is designed by alternating between the two minimization problems until reasonable performance is achieved.

Follow the steps until $\|DN(K)D^{-1}\|_\infty < 1$, or H_∞ norm doesn’t decrease.

1. **K-step.** Design an H_∞ controller for the scaled problem with fixed $D(s)$.

2. **D-step.** Find $D(j\omega)$ to minimize upper bound at each frequency with fixed N.

3. Fit the magnitude of each element of $D(j\omega)$ to a stable and minimum-phase transfer function $D(s)$ and go to step 1.
Controller Simulation Results

- High rotating plasma, the growth rate γ ranges from 10 rad/s to 5,000 rad/s. This results in a range for the uncertain parameter c_{pp} that goes from 71 to 0.3325.

- Controllers designed with a smaller, more unstable nominal c_{pp} value produce the widest range of stability for c_{pp}.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Target Value</th>
<th>Maximum Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>1.0 ms</td>
<td>5.0 ms</td>
</tr>
<tr>
<td>Settling Time</td>
<td>5.0 ms</td>
<td>10 ms</td>
</tr>
<tr>
<td>Overshoot</td>
<td>15 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>N/A</td>
<td>\pm 100 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controller</th>
<th>Stability Range</th>
<th>Performance Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>DK</td>
<td>0 - 7,437 rad/s</td>
<td>0 - 7,254 rad/s</td>
</tr>
<tr>
<td>DK</td>
<td>0 - 7,437 rad/s</td>
<td>0 - 6,459 rad/s</td>
</tr>
</tbody>
</table>

Performance Constraints Stability\Performance Ranges
Initial Condition Response

RWM Mode Amplitude Time Response for $\gamma = 10$ rad/sec

RWM Mode Amplitude Time Response for $\gamma = 5,000$ rad/sec

DK Controller
NCF Controller
Initial Condition Response

First Coil Voltage Applied Time Response for $\gamma = 10 \text{ rad/sec}$

First Coil Voltage Applied Time Response for $\gamma = 5,000 \text{ rad/sec}$
Step Response

RWM Mode Amplitude Time Response for $\gamma = 10$ rad/sec

RWM Mode Amplitude Time Response for $\gamma = 5,000$ rad/sec
Step Response

First Coil Voltage Applied Time Response for $\gamma = 10$ rad/sec

First Coil Voltage Applied Time Response for $\gamma = 5,000$ rad/sec

- DK Controller
- NCF Controller

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007
Time-varying Growth Rate Response

\(\gamma \) and \(c_{pp} \) Trajectories versus Time

\(\gamma \) Growth Rate (rad/sec)

Time (s)

RWM Mode Amplitude Time Response for Step \(\gamma \)

Dashed line: DK Controller
Solid line: NCF Controller

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007
Time-varying Growth Rate Response

Voltage Applied Time Response

- Voltage Applied (V)
- Time (s)

DK Controller
NCF Controller
Sinusoidal Growth Rate Response

\[
\gamma \text{ and } c_{pp} \text{ Trajectories versus Time}
\]

\[
\text{RWM Mode Amplitude Time Response for Sinusoidal } \gamma
\]

\[
\text{DK Controller}
\]

\[
\text{NCF Controller}
\]
Sinusoidal Growth Rate Response

Voltage Applied Time Response

- Voltage Applied (V)
- Time (s)

DK Controller
NCF Controller

Workshop on Improved MHD Control Configurations, Columbia Univ., Nov. 18-20, 2007
Conclusions

- Toroidal current sheet model for the DIII-D tokamak plasma was restructured into a robust control framework, isolating the RWM growth rate $\gamma (c_{pp})$, the key term of RWM instability.

- With the system model in this framework, the parametric DK-iteration method was applied to develop a structured-singular-value based robust controller for a pre-determined range of γ.

- Since the plasma RWM growth rate can vary throughout the operation of the DIII-D tokamak, the design of a controller that can stabilize the system over the entire physical range of γ is critical.

- In terms of robust stability, this method eliminates the need of online identification and controller scheduling.