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in EXTRAP-T2R
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RFP RWM stabilization

Typical methods

Sensor-to-coil
pairwise:
local response
Sensors-to-coils
modewise:
distributed response
(FFT)
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Enter a control perspective

stabilization vs. control
decentralized / centralized
input/output pairing
decoupled control (SVD methods)

Intelligent shell: decentralized stabilization
Mode control: decoupled stabilization
Both approaches in general suboptimal.
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RFP RWM stabilization

More control lingo

Robustness, nominal system
1-DOF/2-DOF regulator
Cascade systems
Sigma-plot Y (s) = G(s)U(s):

σi(ω) ≡
√

λi(G∗(ω)G(ω))

σ {G(ω)} ≤ |Y (ω)|
|U(ω)|

≤ σ {G(ω)} ≡ |G(ω)|
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MHD mode trajectoria

RWM perturbations: cylinder-model

Spatially periodic perturbations of magnetic
structure:

τm,n
∂Bm,n

∂t
− γm,nτm,nBm,n = Mm,nIm,n

where Bext
m,n = Mm,nIm,n.
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MHD mode trajectoria

Spectrum
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Physical modeling

State-space representation

Basic representation
ẋ = Ax + Bu + Nv1
z = Mx
y = Cx + v2

(1)

where

Amn,m′n′ ∼ γmnδmn,m′n′

Bmn,ij ∼ τ−1
mn

∫
Ω

(
r̂(θ, φ) ·

∮
lij

dlij×(r(θ,φ)−rij)
|r(θ,φ)−rij |3

)
e−ι(mθ+nφ)dθdφ

Cpq,mn ∼
∫
Ω fpq(θ, φ)Apq(θ, φ)e+ι(mθ+nφ)dθdφ

(2)
for cylinder-model with perfectly symmetric shell conductivity.
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Physical modeling

Actuators and measurements

Note: (1)-(2) directly obtained from linear model with geometric
consideration of sensors and active coils (actuators)

1 RWM dynamics: τm,nḂw
m,n = τm,nγm,nBw

m,n + Bext
m,n

2 Actuator: b(r) = µ0nc ic
4π

∮
lc

dl×(r−rc)
|r−rc |3

3 Sensor: us = −ns
∂
∂t

∫
Ss

b · dS
i.e laws of Biot-Savart and Faraday.
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m,n = τm,nγm,nBw

m,n + Bext
m,n

2 Actuator: b(r) = µ0nc ic
4π

∮
lc

dl×(r−rc)
|r−rc |3

3 Sensor: us = −ns
∂
∂t

∫
Ss

b · dS
i.e laws of Biot-Savart and Faraday.



Background The unstable plant Example designs: spectrum reference Summary

Physical modeling

Peripheral dynamics

Dynamics of actuators
(amplifier characteristics and
coil L/R-times) not ignorable.
A cascade-type PID-system
employed.

cascade current−control subsystem
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current
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Physical modeling

Compensated SISO lumped amplifier & coil
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Generic properties

Control and observation aliasing

Rectangular schema of equal-size coils; typical complication of
actuator and sensor: aliasing. Planar M × N-DFT pair

Fk ,l = 1√
MN

∑
m,n fm,ne−2πi(mk/M+nl/N)

fm,n = 1√
MN

∑
k ,l Fk ,le+2πi(mk/M+nl/N)

mapping f ↔ F . Periodicity1

Fk+pM,l+qN = Fk ,l and fm+pM,n+qN = fm,n ∀p, q ∈ Z

is M × N.

1also referred to as sidebands
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Generic properties

Control and observation aliasing: SVD diagnose

SVD-
demonstration of
aliasing.
Diagonalization-
attempt
(decoupling
approach) BB+.
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Signal norms and measures of performance

H2 and H∞

Typically

H2: ||x(t)||Q,2 ≡
√∫∞

−∞ xT (τ)Qx(τ)dτ

Normally good for disturbance rejection
requirements.

H∞: ||x(t)||∞ ≡ maxi,τ |xi(τ)|
Often used for enforcing robustness performance.

Performance channel: Denoted z, zj , a mathematically
constructed output for design synthesis and
comparison.
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Dexterous control

Objective formulation

Use admissible inputs (active coil currents u(t)) in the best way
possible to keep a subset z(t) of MHD-mode trajectoria x(t) at

a specified set-point (reference-spectrum vector r(t)), by
responding to plant output y(t) (sensor coil voltages).
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Dexterous control

Linear estimation and optimal filtering

Estimation: Given an interval of observations y(t), t ∈ [tA, tB],
form a clever guess of interesting quantity z(t).

Filtering: Do this in a real-time causal fashion.

Where a linear model is applicable: model-based filtering a la
Kalman is standard procedure.
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Dexterous control

Employing model reduction

For rapid development (e.g.
highly iterative controller
synthesis), and real-time
capabilities of synthesized
controller-dynamics: reduction
techniques. Definition of
Hankel singular values

AP + PAT + BBT = 0

AT Q + QA + CT C = 0

σHankel,i ≡
√

λi(PQ)
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Example: HSVs for a LQG
controller
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Dexterous control

A word on Linear Matrix Inequalities

Central concepts: Lyapunov stability, convex programming.
Paradigm: multi-objective, selective channel
convex optimization and conservatism.
Objectives: H2, H∞, CL pole-region, etc.
Unified formulation: LMI (Linear Matrix Inequality)
constraints.
Example (Lyapunov stability) ẋ = Ax stable iff

∃ symmetric P s.t. P > 0, AT P + PA < 0

meaning M < 0 ⇔ qT Mq < 0 ∀q ∈ Rn ⇔ λmax(M) < 0, i.e.
LMI feasibility problem.
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Dexterous control

Test structure for EXTRAP-T2R spectrum control

the plant
cylindrical RFP RWM model

cascade current−control loop
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Classic LQG

Theory

Reconstructed-state feedback. Solves a quadratic cost
functional minimization:
JQ1Q2

= E
{∫ (

zT Q1z + uT Q2u
)

dt
}

. Design

involves tuning of both KF and LQ. Controller:

{
u = −Lx̂
˙̂x = Ax̂ + Bu + K (y − Cx̂)

where
AP + PAT + NR1NT − (PCT + NR12)R−1

2 (PCT + NR12)T = 0
K = (PCT + NR12)R−1

2

and
AT S + SA + MT Q1M − SBQ−1

2 BT S = 0
L = Q−1

2 BT S
.

Modified plant for field-error compensation:

d

dt

(
x
zs

)
=

(
A NMT

0 −δI

)(
x
zs

)
+

(
B
0

)
u +

(
N
I

)
v1

z =
(
M 0

) ( x
zs

)
y =

(
C 0

) ( x
zs

)
+ v2
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Classic LQG

Theory: keeping it compact

1 Starting from nominal plant (1), formally augment output:

ẋ = Ax + Bu + Nv1,

(
z
y

)
=

(
M
C

)
x +

(
0
I

)
v2 (3)

2 Apply aggressive model-reduction to (3) yielding

ẋ = Āx + B̄u,

(
z
y

)
=

(
C1
C2

)
x +

(
D1
D2

)
u (4)

emerged: direct-terms Ci , Di .

3 Augment (4): static field xs, ẋs = 0 thus

d

dt

(
x
xs

)
=

(
Ā N̄
0 0

)(
x
xs

)
+

(
B̄
0

)
u,

(
z
y

)
=

(
C1 0
C2 0

)(
x
xs

)
+

(
D1
D2

)
u (5)
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Classic LQG

Theory: keeping it compact, contd.

4 Compute KF for (5) hence form observer

d

dt

(
x̂
x̂s

)
=

(
Ā N̄
0 0

)(
x̂
x̂s

)
+

(
B̄
0

)
u + K (y − C2 x̂ − D2u) (6)

This step ignores (C1, D1).

5 Compute LQ state-feedback gain L for (4) involving || · ||2-cross-terms

JQ1,Q2
= E

∫ (
x
u

)T
(

CT
1 Q1C1 CT

1 Q1D1
F DT

1 Q1D1 + Q2

)(
x
u

)
dt (7)

This step ignores (C2, D2).

6 Finding static-gains and sum up control u:

Lr = (−B̄−1Ā − L)(C1 − D1B̄−1Ā)−1 (8a)

Ls = −B̄−1 (8b)

u = Lx̂ + Ls x̂s + Lr r (8c)

done. Control system (6) with (8c), inputs: (u, y, r), output uset .
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Classic LQG

Structure

y

u

objective: internally z=Mx=r

xshat
xhat

x’ = Ax+Bu
 y = Cx+Du

plant

Lr

x’ = Ax+Bu
 y = Cx+Du

KF

Ls

L

1

r

Signal routing for LQG test.
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Classic LQG

Result

128-state control-system (192 inputs, 64 outputs)

spectrum sweep-type reference

model-mismatch, eigenvalue perturbations

static-field errors, noise everywhere

fictitious shot: 200ms
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H∞-type loopshaping

loopsyn theory

Method: observer + normalized coprime factorization
synthesis; MATLAB: Robust Control Toolbox; doc
loopsyn.

γσ {Gz (ω)F (ω)} ≥ σ {Gd (ω)} ω < ω0

γσ {Gz (ω)F (ω)} ≤ σ {Gd (ω)} ω > ω0

where γ is the minimized H∞-performance measure.

Strategy:

1 Form plant Gz : u → z
from nominal modeling

2 Design parameter: desired loop-shape Gd

Typically Gd (s) ∼
ωc,des

s

3 Apply loopsyn to Gz , yield control-law K with
H∞-performance γ

4 Connect K to an observer (here KF) of z: ẑ

Technique similar to hinfsyn & h2syn

NB: KF important by itself (overlooked/blackboxed
by direct output-feedback synthesis)
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H∞-type loopshaping

loopsyn applied
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Control structure: observer +
loopshaping F .
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H∞-type loopshaping

Result

same scenario as for LQG-test

more complex controller; but reducible
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H∞-type loopshaping

Comparison

Why complicate?

SVD-decoupled PID-control:

u(t)set = B+MT FPID(s)(Dr r(t)− ηMC+y(t)) (9)

FPID(s), diagonal (10)

Dr , diagonal : s.t. Gc (s) ∼ I for ω ∼ 0 (11)

Structure:

−zhat

y
u

x’ = Ax+Bu
 y = Cx+Du

plant

x’ = Ax+Bu
 y = Cx+Du

diagonal PID

LDr

−R

1

r

Static state estimation.
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H∞-type loopshaping

Comparison

Precision: Specifically transient precision
significantly improved.

Generality: More involved geometries. Heavily
constrained actuator coverage.
Optimal use of available sensors.

Mode-coupling: Multi-m eigenfunctions, dispersive
field diffusion: static estimator
insufficient.

Physics: Experiments need precision.
Studies in plasma dynamics.

Yes, complicate.

A last example:
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H∞-type loopshaping

Last points

20 40 60 80 100 120 140 160 180 200

−1

−0.5

0

0.5

1

x’ = Ax+Bu
 y = Cx+Du

plant

x’ = Ax+Bu
 y = Cx+Du

observer

Ls

−1

x’ = Ax+Bu
 y = Cx+Du

F

1

r

10
−1

10
0

10
1

10
2

10
3

10
4

−50

0

50

100

150

200

Singular Values

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

Gd (s) =
ωc

s

ωI + s

s
, ωI < ωc

Feedforward: Reproducible error-fields.
Isolate RWM-control problem.

Quick-solution: Pre-set observer initial state.
Trigger.
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Summary

Using recent methods for control design
Model-based; validate and harness
Extend experimental possibilities

Some things todo:
Implement and experiment
Improve modeling
Apply to specific tokamak geometries
MHD signal processing
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Summary

Soon: a firm grip
on magnetic
structure?
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