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ELM-driven RWM

— Background

Big ELM-induced n=1 mode amplitudes alone may not be a
sufficient condition to drive RWM.

Experiments
— Phase dependency of externally stimulated n=1 pulses

‘Stronger’ plasma response occurs at a certain toroidal location
than at any other toroidal location.

— Phase dependency of ELM-driven RWM
— Impacts of ELM-driven toroidal mode spectra

Caveats
Conclusion



Rotationally stabilized plasmas do not

guarantee RWM-free operation.
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« Rotational stabilization might not ' 12197
be robust, in that any non-
axisymmetric disturbance could
trigger RWM.
— Is ITER safe against RWM if the 10‘

rotation is well above the
rotational threshold?

— Maybe not, because a zero 0
frequency MHD activity (e.g.
ELMs) may trigger RWM even in
rotationally stabilized plasmas!.
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« According to a zero-dimensional
model?, a disturbance threshold
exists in order to explain certain

ELM-driven RWMs. 20 45 40 A5 00 05 10 20 30
Time (ms) - 2168.80 Time (ms) - 2122.75

1, Garofalo et al., NF (2007)
2, Strait, IT-4 Mtg in DIII-D (2007) [From Strait et al, APS-DPP (2005)]



In ELM-driven RWM, big n=1 mode amplitudes alone
may not be a sufficient condition to lead to RWM.
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The interaction of the ELM-driven n =1 mode with weakly damped
stable RWM needs to be understood in high torque plasmas.



The plasma responses during a toroidal sweep of n=1
pulse would reveal any toroidal phase dependency.
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1U330 U30 « Hypothesis
— ELM-driven RWM might
be due to stronger plasma
response at a certain
U270 1U90 toroidal location than in
any other location.

— If so, the toroidal sweep
of n=1 pulse may reveal

U210 U150 the toroidal angle
********* dependency of ELM-
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Overall, stronger plasma responses are observed

at half of the machine angle than at the other half.
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 Arguably, the strongest plasma response was
observed when IU330 was peaked.



ELM-driven n=1 field may trigger RWM more readily

near 90 degree than at any other toroidal angle.
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- Assuming that a peaked outward radial flux is the location of the mode,
the preferred toroidal angle for ELM-driven RWM can be expected to
show similar plasma response.

Distance along inner surface [m]
o

- Pulse durations may not change RFA, nor damping rate.



Plasma response to each pulse would result from
all the n =1 fields, as well as the applied field.
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Although the applied field is configured at 90 degree, the
observed phase was toroidally shifted to ~ 50 degree.




A preferred toroidal angle would reside in a quadrant
of the machine angle, showing a tendency to induce
ELM-driven RWM.
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 Preferred phase for n=1 pulse alone may not be sufficient to result
In RWM, either.

« Then, combination of amplitude and phase (e.g. near-static but
slowly rotating) OR something else (e.g. non-rigidity, evolving
damping process) ?

2.25



The plasmaresponse of ELM-driven n=1 mode Is
similar to that of the externally stimulated n=1 pulse.
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While the ELM-driven n =1 mode is usually accompanied by toroidal
phase shifts, the measured phase of ELM-driven RWM shows a
tendency to reside in a quadrant of the machine angle.
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Active feedback control prevents the ELM-driven n=1
field from interacting with weakly damped stable RWM.
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Without active feedback, the RFA occurs first,
leading to RWM.
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ELM-driven toroidal mode spectra show that significant

n >1 components are present, as well as n=1 fields.
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Caveats
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o Externally stimulated n=1 pulses cannot

reproduce the same toroidal mode spectra as ELM
drives.

— L/R time of externally driven n=1 current vs natural ELM

— Typically, the multiple low-n modes, including n=1 mode, are
almost always observed, when ELMs occur in high beta plasmas.

 Any intrinsic or externally overdriven/underdriven
non-axisymmetric fields can pose a potential
threat to interact with weakly damped stable RWM,
being amplified and causing unstable RWM.

— With active feedback on, the damping rates of the n=1 fields
can be reduced down to sub-milliseconds.

* Impacts of ELM-driven toroidal mode spectra on
error fields, toroidal rotation, and multiple RWM
need to be assessed. &



Conclusions
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Even in high rotation plasmas, any non-axisymmetric
disturbance could trigger RWM, which might be due to
the interaction of the disturbance with weakly damped
stable RWM.

In ELM-driven RWM,

big n=1 mode amplitudes alone may not be a sufficient
condition to lead to RWM.

ELM-driven RWM shows a toroidal phase dependency,
where the interaction of non-axisymmetric mode with
wall stabilized mode appears to readily occur.

Active feedback control prevents the ELM-driven n=1
field from interacting with weakly damped stable RWM.
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