Toroidal phase dependency of ELM-driven RWM

Y. In¹, M. Okabayashi², E.J. Strait³, A.M. Garofalo⁴, G.L. Jackson³, J.S. Kim¹, R.L. La Haye³, H. Reimerdes⁴

¹ FAR-TECH, Inc., ² PPPL, ³ GA, ⁴ Columbia U.

MHD workshop, Columbia U., New York, NY November 18-20, 2007

Outline

ELM-driven RWM

- Background

Big ELM-induced n=1 mode amplitudes alone may not be a sufficient condition to drive RWM.

Experiments

Phase dependency of externally stimulated n=1 pulses

'Stronger' plasma response occurs at a certain toroidal location than at any other toroidal location.

- Phase dependency of ELM-driven RWM
- Impacts of ELM-driven toroidal mode spectra
- Caveats
- Conclusion

Rotationally stabilized plasmas do not guarantee RWM-free operation.

- Rotational stabilization might not be robust, in that any nonaxisymmetric disturbance could trigger RWM.
 - Is ITER safe against RWM if the rotation is well above the rotational threshold?
 - Maybe not, because a zero frequency MHD activity (e.g. ELMs) may trigger RWM even in rotationally stabilized plasmas¹.
- According to a zero-dimensional model², a disturbance threshold exists in order to explain certain ELM-driven RWMs.
 - ¹. Garofalo et al., NF (2007)
 - ². Strait, IT-4 Mtg in DIII-D (2007)

FAR-TECH

[From Strait et al, APS-DPP (2005)]

In ELM-driven RWM, big *n*=1 mode amplitudes alone may not be a sufficient condition to lead to RWM.

The interaction of the ELM-driven *n* = 1 mode with weakly damped stable RWM needs to be understood in high torque plasmas.

The plasma responses during a toroidal sweep of *n*=1 pulse would reveal any toroidal phase dependency.

Hypothesis

 ELM-driven RWM might be due to stronger plasma response at a certain toroidal location than in any other location.

FAR-TECH

- If so, the toroidal sweep of n=1 pulse may reveal the toroidal angle dependency of ELMdriven RWM.
 - Criteria:
 - higher amplitude
 - slower damping

Overall, stronger plasma responses are observed at half of the machine angle than at the other half.

 Arguably, the strongest plasma response was observed when IU330 was peaked.

ELM-driven n=1 field may trigger RWM more readily

near 90 degree than at any other toroidal angle.

- Assuming that a peaked outward radial flux is the location of the mode, the preferred toroidal angle for ELM-driven RWM can be expected to show similar plasma response.

- Pulse durations may not change RFA, nor damping rate.

Plasma response to each pulse would result from all the *n* =1 fields, as well as the applied field.

Although the applied field is configured at 90 degree, the observed phase was toroidally shifted to ~ 50 degree.

A preferred toroidal angle would reside in a quadrant of the machine angle, showing a tendency to induce ELM-driven RWM.

- Preferred phase for n=1 pulse alone may not be sufficient to result in RWM, either.
- Then, combination of amplitude and phase (e.g. near-static but slowly rotating) OR something else (e.g. non-rigidity, evolving damping process) ?

The plasma response of ELM-driven *n*=1 mode is similar to that of the externally stimulated *n*=1 pulse.

While the ELM-driven *n* = 1 mode is usually accompanied by toroidal phase shifts, the measured phase of ELM-driven RWM shows a tendency to reside in a quadrant of the machine angle.

Active feedback control prevents the ELM-driven n=1 field from interacting with weakly damped stable RWM.

Without active feedback, the RFA occurs first, leading to RWM.

ELM-driven toroidal mode spectra show that significant

n > 1 components are present, as well as *n*=1 fields.

- Externally stimulated n=1 pulses cannot reproduce the same toroidal mode spectra as ELM drives.
 - L/R time of externally driven n=1 current vs natural ELM
 - Typically, the multiple low-n modes, including n=1 mode, are almost always observed, when ELMs occur in high beta plasmas.
- Any intrinsic or externally overdriven/underdriven non-axisymmetric fields can pose a potential threat to interact with weakly damped stable RWM, being amplified and causing unstable RWM.
 - With active feedback on, the damping rates of the n=1 fields can be reduced down to sub-milliseconds.
- Impacts of ELM-driven toroidal mode spectra on error fields, toroidal rotation, and multiple RWM need to be assessed.

EAR-TECH

Conclusions

- Even in high rotation plasmas, any non-axisymmetric disturbance could trigger RWM, which might be due to the interaction of the disturbance with weakly damped stable RWM.
- In ELM-driven RWM,

big n=1 mode amplitudes alone may not be a sufficient condition to lead to RWM.

- ELM-driven RWM shows a toroidal phase dependency, where the interaction of non-axisymmetric mode with wall stabilized mode appears to readily occur.
- Active feedback control prevents the ELM-driven n=1 field from interacting with weakly damped stable RWM.