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Pedestal Height and ELLM behavior are key i1ssues for Next Step

* Core transport modeling indicates profiles are quite stiff, Py ~B 4%,
pedestal conditions essentially determine performance [Kinsey, Waltz]

e Large ELMs pose risk of severe divertor erosion

* Begin Uniform Technical Assessment of pedestal constraints due to
MHD stability, and predictions of ELM behavior for ITER-FEAT,
FIRE, Ignitor

— “Uniform” is a challenge as Ignitor plans to operate in L-mode. For now,
ignore this and calculate constraints that would exist if it did have an
H-mode-like pedestal.

* Uncertainty in pedestal transport, particularly in physics setting the
pedestal width, leaves gaps in our predictive capability

e Suggestions for how to proceed welcomed
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Procedure for evaluating ELM/pedestal stability

Construct model equilibria, match design B,, H@, R, a, k, 0, <n>

Density and Temperature Profiles have tanh pedestal profiles and polynomial

profiles in the core (where W< W )
n,)=ng,, +a,{tanh[2(0 -, )/A]-tanh[2(W -V . ) /Al} + a,[1 - (/W )" "
Tp)=T,, + a; {tanh[2(1 - W ., )/A] - tanh[2(W - W, ., ) /A]} + ap, [1- (W/W )" ™"
— ay & a; chosen to give desired pedestal and axis values

— 0y & 0, chosen to match expected core profiles from transport codes
— Note that these instabilities are relatively insensitive to details of core profiles

Current profile aligned to Sauter collisional bootstrap model in the edge, core
profile chosen to give q,=1.05

Width (A) and height Aﬁu&v of pedestal are varied, and MHD stability boundaries
for n=8,10,15,20,30 are evaluated with ELITE (requires hundreds of full
equilibrium constructions and thousands of MHD stability calculations)

“Baseline” case: n,,;=0.71<n>, ny=1.1<n>, n.,,=0.3<n >, ot,n=1, 0, =0.5, ctyo=1, oy, =2
ITER: B=5.3T, I =15MA, R=6.2m, a=2.0m, k=1.85, =0.49, <n >=10%m
FIRE: B=10T, [ =7.7MA, R=2.14m, 2=0.595m, k=2.0, 8=0.7, <n_>=3.6 10*m?
Ignitor: B=13T, 1 =11MA, R=1.33m, a=0.455m, k=1.8, =0.4, <n >=9.5 10%m3
Some caveats: no separatrix, up-down symmetric model equilibria, ideal MHD
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ELITE is a highly efficient 2D MHD code for n>~5

Expect that most unstable mode will often be coupled peeling-ballooning mode at
intermediate wavelength (5<~n<~50)

Need to scan real equilibria in several parameters simultaneously and explore stability
constraints over a wide range of n -> Need a fast code

ELITE is a 2D eigenvalue code, based on ideal MHD (amenable to extensions, includes
simple model of diamagnetic stabilization):

Generalization of ballooning theory to incorporate surface terms which drive
peeling modes, and retain first two orders in 1/n (treats intermediate n>~5)

Plasma displacement, X, expanded in polodial Fourier harmonics:
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Makes use of fact that each u (x) is localized about its own mode rational
surface where m=ng => fast and efficient code

Study coupled peeling/ballooning modes and quantitative constraints on edge
gradients and pedestal height. Growth rates and mode structures generated.

Successfully benchmarked against GATO and MISHKA

[P.B. Snyder, H.R. Wilson et al Phys Plas 9 2037 (2002); H.R. Wilson, P.B. Snyder et al
Phys Plas 9 1277 (2002)]
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Sample Model Equilibrium Profiles

ITER-FEAT model profiles for A/a~0.03, T ,~5keV case
Sample ITER-FEAT profiles Sample ITER-FEAT profiles
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e The pedestal width (A) is varied from ~1% to 12% of the poloidal flux
(A/a~0.005-0.07)

* Ateach value of A, T 4 1s increased (with J,,; calculated consistently)
until instabilities are triggered 0“0 CENERAL ATOMICS



Pedestal Stability Constraints on T

T pog limits for ITER, njeg=7.1 1013 cm3 T peg limiits for FIRE, npeg=2.6 1014 cm3 | Mﬁa limits for Ignitor, ny:=6.7 10 cr3
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* T4 limitis a strong function of pedestal width, but notably sub-linear,

particularly at narrow width (~A%3)

e Intermediate to high-n peeling-ballooning modes are most unstable. ITER
& FIRE show significant second stability to high-n modes at larger widths.

* Useful metric for comparing machines is 3.4 O Pyeq (see following)

 A/a=0.03 provides a useful reference point, similar to present observations.

At this width or larger, T ., 1s in range needed for good performance.
[J. Kinsey transport talk Wednesday morning |
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Comparison of Normalized Pedestal Stability Limits
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Papea Provides a useful figure of merit for inter-machine comparisons

Stronger shaping = higher .4 & a

cped

Ignitor has largest I/aB=1.86, ITER=1.42, FIRE=1.29
Maximum stable {3 ., important for core transport, remarkably similar

between machines

o, decreases strongly with width

[note: these figures contain the same data as the previous page, selecting the most unstable
n and re-plotting the stability threshold in terms of other vars] 0“0 CENERAL ATOMICS



Variation with triangularity and density

variation in Stability Limits with Triangularity

variation in Stability Limits with Density
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edge triangularity (8,)

Greenwald fracltion {<n>/Ngzyw)

Calculated at fixed width A/a~0.03 (5% of flux) and reference parameters

except the one varied

Increasing triangularity (0,) is stabilizing, levels off around 9,~0.5

Increasing density lowers edge bootstrap current

b

a
restricts 2nd stability access.

Appears possible to increase performance by operating at lower density;

tradeoffs with divertor, ELM size?
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Unstable Mode Structure and ELLM size

=
2

Eigenmode Amplitude (arb.)

@

m o\qm K511 I R LA RN B BN R R
U.mw M o.mwl
m 100}
o.mw .muom. S

B
0.7 0.7 o 09 10 o

r/a
Comparison of radial eigenmode structures for n=8 & 20 in ITER-FEAT model
equilibrium with A/a=0.03, T ,=6.2keV. Lower n modes are slightly more extended -1
 ELM size expected to be related to unstable mode width, _iqq!
but details of this relationship are complex and uncertain.

e C(Calculated mode structures extend beyond pedestal. Some- 150,

Q@HVQSQOSOO onn 1401601 ROEN02202403RGER
ITER & FIRE appear able to access 2nd stable edge 2D Suucture of n=20

: . mode in FIRE model
regime and explore tradeoffs between higher pedestal and equilibrium with
possible larger ELMs due to lower n instabilities. A/a=0.03, T, ,=SkeV
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Summary/Plans

MHD stability imposes constraints on pedestal height, which are strong
functions of pedestal width (but not linear with width) and plasma shape.
Constraints are ~similar between machines.

Limiting instability is intermediate to high-n peeling-ballooning mode. Strong
shaping opens 2nd stability, and leads to lower n for limiting mode. Mode
width extends somewhat beyond the pedestal.

Uncertainty about the pedestal width makes precise prediction difficult.
Observed correlations (A~ 1'%, A~p*) are ~expected from the stability
constraints and may provide limited information on physics setting the width.
Finite-n stability constrains the width as well as the gradient, but
understanding of transport likely needed as well to accurately predict width.
(power dependence of width is a key question)

For A/a in observed range, constraints allow [ ., in vicinity of what’s
predicted to be needed for good performance (GLF23 Kinsey, Waltz).
Optimizing shaping & density may increase it further.

These are preliminary results with ideal MHD. Non-ideal effects such as

diamagnetic stabilization will be considered - expected to increase stability
threshold somewhat and move most unstable mode toward lower n

Plan to parameterize stability constraints, and try to use better understanding
of pedestal stability to “back out” behavior of width from the database
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