Study of Critical Pressure Gradient at the Edge of Type I ELMy H-mode plasmas

T. Onjun,

A. H. Kritz, and G. Bateman Lehigh University Fusion Physics Group Bethlehem, PA 18015

V. Parail

Euratom/UKAEA, Culham Science Centre,

Abingdon OX14 3BD

International Sherwood Fusion Theory Conference

Objectives

- Examine approaches for determining magnetic shear and safety factor used in a prediction of T_{ped}
- □ Examine sensitivity of *T*_{ped} on the functional form assumed for the elongation and triangularity
- Investigate conditions for possible access to 2nd stability of the ballooning mode instability
- Simulation of a ρ* scan utilizing a predictive pedestal temperature model in the BALDUR integrated predictive transport code

Influence of *s* and *q* on
$$T_{ped}$$

The pedestal width, based on magnetic and flow
shear stabilization ($\Delta \propto \rho s^2$), yields:
 $T_{ped} [keV] = C_w^2 (3.231 \times 10^{37}) \left(\frac{B^2}{q^4}\right) \left(\frac{A_H}{R^2}\right) \left(\frac{\alpha_c^2}{n_{ped}^2}s^4\right)$
 C_w is a constant in the pedestal width model
Pedestal temperature is strongly dependent on
magnetic shear, *s*, and safety factor, *q*
Equation for T_{ped} may be nonlinear depending on
how *s* and *q* are computed

Scaling of α_c

Decrementational equations of a second sec

Experimental Suggestion for Geometrical Factor

One approximation considered for the geometrical factor f has the following dependence on elongation and triangularity:

$$f(\kappa, \delta) = 0.5(1 + \kappa_{95}^2(1 + C_0\delta_{95}^2))$$

We use :
$$\alpha_c = 0.4 s (1 + \kappa_{95}^2 (1 + C_0 \delta_{95}^2))$$

International Sherwood Fusion Theory Conference

Calculation of *s* **and** *q* **using Approach 2**

Approach 2: Magnetic shear (*s*) is calculated with bootstrap current effect included. Safety factor is calculated at 95% flux surface.

$$q_{95} = \frac{5a^2B}{IR} \frac{(1+\kappa_{95}^2(1+2\delta_{95}^2-1.2\delta_{95}^3))(1.17-0.65\varepsilon)}{2(1-\varepsilon^2)^2}$$

Derivation of *s* **is shown in A. H. Kritz's poster**

International Sherwood Fusion Theory Conference

Calculation of *s* **and** *q* **using Approach 3**

Approach 3: Magnetic shear and safety factor are calculated at one pedestal width away from the separatrix

(M. Sugihara, Nuclear Fusion, 40 (2000) 1743)

$$\Delta = a (1 - x) = \text{Pedestal width}$$

$$q(x) = \frac{q_{95}}{2.933} \left[\left(1 + \left[\frac{x}{1.4} \right]^2 \right)^2 + 0.267 |\ln(1 - x)| \right]$$

$$s = \frac{x}{q} \frac{\partial q}{\partial x}$$

International Sherwood Fusion Theory Conference

Calculation of *s* **and** *q* **using Approach 4**

Approach 4: Magnetic shear with bootstrap current included and safety factor calculated one pedestal width away from separatrix

$$\Delta = a (1 - x) = \text{Pedestal width}$$

$$q(x) = \frac{q_{95}}{2.933} \left[\left(1 + \left[\frac{x}{1.4} \right]^2 \right)^2 + 0.267 |\ln(1 - x)| \right]$$

$$s = \frac{s_0 \sqrt{\varepsilon}}{\sqrt{\varepsilon} + 0.1s_0 b (v^*, \varepsilon) f(\kappa, \delta)} \quad s_0 = \frac{x}{q} \frac{\partial q}{\partial x}$$

This Approach used in A.H. Kritz and G. Bateman's poster

International Sherwood Fusion Theory Conference

Result of Approach 1

The predictions of T_{ped} **using Approach 1 compared with 533 experimental data points.**

> Shear is constant (s = 2) and $q = q_{95}$

Result of Approach 3

➤ s and q calculated one pedestal width away from the separatrix and bootstrap current effect not included

Result of Approach 4

➤ s with bootstrap current effect included and q are calculated one pedestal away from separatrix

RMS of different approaches for *s* **and** *q*

 Predictions of pedestal temperature based on different approaches for s and q is compared with 533 experimental data points

	$C_0 = 2$	C ₀ =5	C ₀ =10	$C_0 = 20$
Approach 1	57.8	52.0	50.7	60.5
Approach 2	47.5	43.3	40.2	38.7
Approach 3	36.7	32.2	29.7	32.9
Approach 4	35.4	32.0	29.6	29.0

Access to 2nd stability

JET Discharge 53186 (low triangularity) does not have access to 2nd stability

- Enter unstable regime of ballooning mode
- Remains at the transition between 1st and 2nd stability (at the nose of unstable curve)
- □ Possible access to 2nd stability can be achieved by
 - Strong shaping (high triangularity)
 - Strong edge current
 - achieved by increasing bootstrap current or
 - achieved by increasing plasma current

Result of Increasing of Edge Current

□ With a small change in the edge conditions, the edge pressure gradient can change dramatically and impact the performance of the plasma in H-mode

> For example, access to 2nd stability can achieved

Core and Edge model

Pedestal temperature model is implemented in the predictive integrated transport code, BALDUR, to provide boundary conditions

Core transport model

- Core transport is calculated using MMM95 model
- Agrees with experimental results (within 15% RMS deviation)

Pedestal temperature model

- Based on ballooning mode for pressure gradient (approach 4) and flow&magnetic shear stabilization for width
- Approximately 32% RMS deviation from experimental results

╋

)* scan

\square Simulations of $\rho*$ scans in DIII-D and JET have been carried out using BALDUR code

Discharge	D3D 82205	D3D 82788	JET 33131	JET 33140	JET 35156	JET35171
Туре	Low p*	High ρ*	Low p*	High ρ*	Low p*	High ρ*
R (m)	1.69	1.68	2.94	2.93	2.87	2.88
a (m)	0.63	0.62	0.94	0.92	0.93	0.94
I _p (MA)	1.34	0.66	2.83	1.61	2.05	1.01
B (T)	1.87	0.94	3.13	1.77	2.17	1.09
κ	1.71	1.67	1.70	1.56	1.56	1.58
δ	0.37	0.35	0.28	0.26	0.11	0.24
ρ*(0)	0.013	0.019	0.005	0.008	0.005	0.010

Simulations of ρ * scan in DIII-D

Simulations use MMM95 + $\Delta \propto \rho s^2$ + Approach 4 for *s* and *q*

Simulations of ρ * scan in JET

International Sherwood Fusion Theory Conference

Simulations of p* scan in JET

International Sherwood Fusion Theory Conference

Pedestal scaling in ρ * scan

In ρ * scan, β and ν * are kept constant

> This results in the relationship $T_{\rm core} \propto {\rm B}^{0.67}$

Discharge	B (T)	T _{ped} (keV)	\mathbf{T} (\mathbf{D}) ^{0.79}
DIII-D 82205	1.87	0.79	$\frac{I_{ped,82205}}{T} = \frac{B_{82205}}{D}$
DIII-D 82788	0.94	0.46	I ped ,82788 B 82788
JET 33131	3.13	1.59	$\frac{T_{ped,33131}}{=} \left(\frac{B_{33131}}{B_{33131}}\right)^{0.74}$
JET 33140	1.77	1.04	$T_{ped,33140}$ B_{33140}

> In the pedestal region, $T_{\rm ped} \propto B^{0.77}$

Stronger temperature dependence on magnetic field in the pedestal than in the core

Summary-1

- Using *s* at one pedestal width away from the separatrix and modified with bootstrap current (Approach 4) yields lowest RMS error
 - > 29.0 % with the geometrical factor of $f(\kappa, \delta) = 0.4 \text{ s} (1 + \kappa_{95}^2 (1 + 20\delta_{95}^2))$
- □ Increasing effect of triangularity yields better agreement with experimental data
- Bootstrap current has limited effect in improving the agreement with data
 - > Negligible effect when shear is calculated at one pedestal width away from separatrix

- ❑ Plasma can access 2nd stability with large plasma edge current
 - >Increase bootstrap current or plasma current
- Simulations of ρ* scans discharges carried out using the BALDUR integrated transport code with a predictive boundary model for T_e and T_i
 - Errors in the prediction of T_{ped} do not amplify the error in the core predictions
 - $> T_{ped}$ scales as $B^{0.77}$ in the pedestal region

• $T_{\rm ped}$ has stronger dependence on *B* than does $T_{\rm core}$

