Models for the Pedestal Temperature at the Edge of H-mode Tokamak Plasmas

A. H. Kritz,

T. Onjun and G. Bateman Lehigh University Fusion Physics Group Bethlehem, PA 18015

Outline of Poster Presentations

- **A. H. Kritz's presentation**
 - > Models for T_{ped} using different width scalings
- **T. Onjun's presentation**
 - Examine effect of magnetic shear models and geometrical factors on T_{ped} predictions
 Simulate ρ* scans in DIII-D and JET tokamaks using predictive core together with T_{ped} models
- **G. Bateman's presentation**
 - Simulations using predictive core and pedestal
 - > Predictions of T_{ped} for ITER and FIRE
 - > Predictions for performance of ITER and FIRE

H-mode Pedestal

Objective: Develop model to predict temperature at top of the pedestal for H-mode plasmas

Motivation:

- Boundary condition required for integrated predictive modeling codes
 - Needed for predicting performance of present day tokamaks, new experiments and fusion reactor designs

 \succ Temperature in plasma core depends on T_{ped}

Experimental Data

□ Models will be used to predict *T*_{ped} and compared against the experimental data

533 data points of type I ELMy H-mode obtained from the International Pedestal Database Version 3.1

http://pc-sql-server.ipp.mpg.de/Peddb/

Tokamak	Data points	Pedestal Measurement Method
JT-60U	367	At Psi95
ASDEX-U	105	At 2 cm from separatrix
JET	56	Linear fit
DIII-D	5	Tanh fit

 $> T_{i, ped}$ is used in comparison when it is available

Critical Pressure Gradient

□ For circular geometry, the critical pressure gradient is expected to be linearly proportional to magnetic shear in the first stability regime:

$$\alpha_c = 0.8 s$$

□ In terms of magnetic shear and geometric factors, elongation (κ) and triangularity (δ), α_c is given by

$$\alpha_{c} = 0.4s(1 + \kappa_{95}^{2}(1 + 5\delta_{95}^{2}))$$

Additional study of geometrical factor see T. Onjun's poster

Bootstrap Current Effect

Bootstrap current is large at the edge due to the steep pressure gradient, which can reduce magnetic shear: $j_h \uparrow s \downarrow \alpha_c \downarrow$ $T_{\rm ped}$ □ Magnetic shear, with the bootstrap current included, can be estimated as: $s \equiv \frac{r}{q} \frac{\partial q}{\partial r} \approx s_0 (1 - \frac{j_b}{j_{tot}})$ s_0 is shear without j_h

Bootstrap Current Effect on α_c

Bootstrap current:

$$j_{b} \approx -b(v^{*}, \varepsilon) \frac{\sqrt{\varepsilon}}{B_{\theta}} \frac{\partial p}{\partial r}$$

• Modifies magnetic shear, *s*:

$$s = \frac{s_0 \sqrt{\varepsilon}}{\sqrt{\varepsilon} + 0.1 s_0 b(v^*, \varepsilon)(1 + \kappa_{95}^2 (1 + 5\delta_{95}^2))}$$

Results in modification of critical pressure gradient:

$$\alpha_{c} = \frac{s_{0}\sqrt{\varepsilon}(1+\kappa_{95}^{2}(1+5\delta_{95}^{2}))}{\sqrt{\varepsilon}+0.1s_{0}b(\upsilon^{*},\varepsilon)(1+\kappa_{95}^{2}(1+5\delta_{95}^{2}))}$$

Magnetic Shear

□ Magnetic shear is found by solving equations below:

$$\Delta = a (1 - x) = \text{Pedestal width}$$

$$q(x) = \frac{q_{95}(\kappa_{95}, \delta_{95}, \varepsilon)}{2.933} \left[\left(1 + \left[\frac{x}{1.4} \right]^2 \right)^2 + 0.267 |\ln(1 - x)| \right]$$

$$q_{95} = \frac{5a^2 B}{IR} \frac{(1 + \kappa_{95}^2 (1 + 2\delta_{95}^2 - 1.2\delta_{95}^3))(1.17 - 0.65\varepsilon)}{2(1 - \varepsilon^2)^2}$$

$$\frac{s_0\sqrt{\varepsilon}}{\sqrt{\varepsilon}+0.1s_0b(v^*,\varepsilon)(1+\kappa_{95}^2(1+5\delta_{95}^2))} \qquad s_0=\frac{x}{q}\frac{\partial q}{\partial x}$$

As width increases, magnetic shear decreases (M. Sugihara, Nuclear Fusion, 40 (2000) 1743)

International Sherwood Fusion Theory Conference

s =

Width: Flow & Magnetic Shear Stabilization

□ Assume that, at the top of the H- mode pedestal, the shearing rate ($\gamma_{E\times B}$) is equal to the linear growth rate (γ_s). The linear growth rate is chosen to provide a gyro-Bohm type transport and includes the stabilizing effect due to magnetic shear.

(M. Sugihara, Nuclear Fusion, 40, 1743 (2000))

International Sherwood Fusion Theory Conference

Flow & Magnetic Shear Stabilization

□ Using pedestal width based on magnetic and flow shear stabilization ($\Delta \propto \rho s^2$), the pedestal temperature is given by:

$$T_{\rm ped}[\rm keV] = C_{\rm w}^2 (3.231 \times 10^{37}) \left(\frac{B}{q(x)^2}\right)^2 \left(\frac{A_{\rm H}}{R^2}\right) \left(\frac{\alpha_c(x)}{n_{\rm ped}}\right)^2 s(x)^4$$

□ Equation above is a non-linear equation since q(x), $\alpha_c(x)$ and s(x) are functions of the pedestal width Δ which in turn is a function of T_{ped}

H-mode Pedestal Temperature

Statistical Analysis

Use RMSE and offset to quantify agreement between prediction and experimental data

• RMSE is defined as

RMSE(%) = 100 *
$$\sqrt{\frac{1}{N-1} \sum_{i=1}^{N} [\ln(T_{Exp_i}) - \ln(T_{Mod_i})]^2}$$

Offset is defined as

Offset(%) = 100 *
$$\frac{1}{N} \sum_{i=1}^{N} [\ln(T_{Exp_i}) - \ln(T_{Mod_i})]$$

International Sherwood Fusion Theory Conference

Width: Flow Shear Stabilization

□ Assume that ExB suppression of low-*k* modes is relevant for the pedestal. The low-*k* are slower growing but may have large mixing length transport. (G. Hammett, Snowmass Meeting 1999)

International Sherwood Fusion Theory Conference

Width: Based on Poloidal B

□ Based on DIII-D data, Osborne proposed scaling of the form $\Delta/R \propto (\beta_{POL}^{PED})^{1/2}$ based on the assumption that the magnetic well stabilizes edge turbulence (T. H. Osborne, J. Nuclear Materials 1999)

$$\Delta / R \propto (\beta_{\text{POL}}^{\text{PED}})^{1/2} = (\frac{4\mu_0 n_{\text{ped}} k T_{\text{ped}}}{\langle B_{\theta} \rangle^2})^{1/2}$$

 $< B_{\rho} >$ is the average poloidal field around flux surface

$$< B_{\theta} > \approx \mu_0 I_p / (\pi a (1 + \kappa))$$

International Sherwood Fusion Theory Conference

T_{ped} Model Based on Poloidal β

□ Using pedestal width based on a model proposed by Osborne at DIII-D ($\Delta \propto \sqrt{\beta_{\theta}}R$), T_{ped} is given by

$$T_{\text{ped}} = \frac{B^2}{4\mu_0 n_{\text{ped}} k R q^2} \alpha_c \left[C_{\text{w}} \sqrt{\left(4\mu_0 n_{\text{ped}} k T_{\text{ped}}\right) / \left(\frac{\mu_0 I_p}{\pi \alpha (1+\kappa)}\right)^2} R \right]$$

$$T_{\rm ped} = C_{\rm w}^2 (1.244 \times 10^{21}) \left(\frac{B}{q(x)}\right)^4 \left(\frac{a\pi (1+\kappa)}{\mu_0 I_p}\right)^2 \left(\frac{\alpha_c(x)^2}{n_{\rm ped}}\right)^2 \left(\frac{\omega_c(x)^2}{n_{\rm ped}}\right)^2 \left(\frac{\omega_c(x)^2}{n_{$$

Non-linear equation for T_{ped} : q(x) and $\alpha_c(x)$ are functions of Δ which in turn is a function of T_{ped}

H-mode Pedestal Temperature

Comparison of T_{Mod} and T_{Exp}

Width scaling	RMSE(%)	Physics basis
$\Delta \propto \sqrt{\rho R q}$	30.8	Flow shear stabilization
$\Delta \propto \rho s^2$	32.0	Magnetic and flow shear stabilization
$\Delta \propto \sqrt{\beta_{\theta}} R$	33.5	Poloidal pressure
$\Delta \propto \rho^{\frac{2}{3}} R^{\frac{1}{3}}$	33.7	Diamagnetic stabilization
$\Delta \propto \sqrt{\varepsilon} \rho_{\theta}$	34.4	Ion orbit loss
$\Delta \propto 1/n_{\rm ped}$	41.4	Neutral Penetration

Summary-1

- **Developed models for predicting temperature at the top of the pedestal in type I ELMy H-mode plasmas**
 - > Based on models for the width of the pedestal and for the pressure gradient within the pedestal
 - Pressure gradient does not depend on power
- Considered six theory-motivated scalings for the width of the pedestal
 - > All the scalings considered yield T_{ped} inversely proportional to the pedestal density
 - All models calibrated using 533 experimental data points
 - All are type I ELMy H-mode plasma
 - From 4 tokamaks (ASDEX, DIII-D, JET and JT-60U)

- Pressure gradient within pedestal limited by high-n ballooning mode instability
 - > Magnetic shear and safety factor are calculate at one pedestal away from the separatrix
 - **≻**Bootstrap current effect is included
- □ Models predict T_{ped} in the range of 30.8% to 41.4% compared with 533 data points
 - > Model with pedestal with $\Delta \propto \sqrt{\rho R q}$ yields best agreement with experiment (RMSE = 30.8%)
 - Five models with different width scalings yield similar agreement (RMSE 30.8% to 34.4%)
 - >Neutral penetration model can be excluded

